BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li Z, Zheng Q, Wang ZL, Li Z. Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics. Research (Wash D C) 2020;2020:8710686. [PMID: 32259107 DOI: 10.34133/2020/8710686] [Cited by in Crossref: 83] [Cited by in F6Publishing: 86] [Article Influence: 41.5] [Reference Citation Analysis]
Number Citing Articles
1 Dahiya AS, Kumaresan Y, Ozioko O, Ntagios M, Dahiya R. Soft Sensors for Electronic Skin. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00069-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Zubair U, Naseer R, Ashraf M, Umer M, Javid A, Rashid A, Xue Z. Multifunctional knit fabrics for self-powered sensing through nanocomposites coatings. Materials Chemistry and Physics 2023;293:126951. [DOI: 10.1016/j.matchemphys.2022.126951] [Reference Citation Analysis]
3 . Artificial Intelligence Algorithm for Flexible Sensors. Flexible Piezoelectric Energy Harvesters and Sensors 2022. [DOI: 10.1002/9783527833115.ch11] [Reference Citation Analysis]
4 Wang Y, Hong M, Venezuela J, Liu T, Dargusch M. Expedient secondary functions of flexible piezoelectrics for biomedical energy harvesting. Bioact Mater 2023;22:291-311. [PMID: 36263099 DOI: 10.1016/j.bioactmat.2022.10.003] [Reference Citation Analysis]
5 Liu Q, Li X, Zhang H, Ren J, Yang S, Cao L, Liang J, Ling S. IntelliSense silk fibroin ionotronic batteries for wildfire detection and alarm. Nano Energy 2022;101:107630. [DOI: 10.1016/j.nanoen.2022.107630] [Reference Citation Analysis]
6 Kim S, Lee S, Park J. A skin-inspired, self-powered tactile sensor. Nano Energy 2022;101:107608. [DOI: 10.1016/j.nanoen.2022.107608] [Reference Citation Analysis]
7 Sun Y, Zheng Y, Wang R, Lei T, Liu J, Fan J, Shou W, Liu Y. 3D micro-nanostructure based waterproof triboelectric nanogenerator as an outdoor adventure power source. Nano Energy 2022;100:107506. [DOI: 10.1016/j.nanoen.2022.107506] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Xie B, Guo Y, Ou Z, Chen Y, Hou M, Chen X, Gao J. Laser-induced graphene enabling self-powered wireless direction sensor. 2022 23rd International Conference on Electronic Packaging Technology (ICEPT) 2022. [DOI: 10.1109/icept56209.2022.9873131] [Reference Citation Analysis]
9 Sun B, Chao D, Wang C. Piezoelectric Nanogenerator Based on Electrospun Cellulose Acetate/Nanocellulose Crystal Composite Membranes for Energy Harvesting Application. Chem Res Chin Univ 2022;38:1005-11. [DOI: 10.1007/s40242-021-1252-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Serairi L, Leprince-wang Y. ZnO Nanowire-Based Piezoelectric Nanogenerator Device Performance Tests. Crystals 2022;12:1023. [DOI: 10.3390/cryst12081023] [Reference Citation Analysis]
11 Zhang H, Zhang P, Deng L, Zhang W, Liu B, Ren D, Yang Z. Three-Dimensional Polypyrrole Nanoarrays for Wearable Triboelectric Nanogenerators. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02357] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Liu Z, Zhou Y, Qu X, Xu L, Zou Y, Shan Y, Shao J, Wang C, Liu Y, Xue J, Jiang D, Fan Y, Li Z, Ye H. A Self-Powered Optogenetic System for Implantable Blood Glucose Control. Research 2022;2022:1-13. [DOI: 10.34133/2022/9864734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Liu H, Zhang R, Liu Y, He C. Unveiling Evolutionary Path of Nanogenerator Technology: A Novel Method Based on Sentence-BERT. Nanomaterials (Basel) 2022;12:2018. [PMID: 35745356 DOI: 10.3390/nano12122018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Alagumalai A, Shou W, Mahian O, Aghbashlo M, Tabatabaei M, Wongwises S, Liu Y, Zhan J, Torralba A, Chen J, Wang Z, Matusik W. Self-powered sensing systems with learning capability. Joule 2022. [DOI: 10.1016/j.joule.2022.06.001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Babu VJ, Anusha M, Sireesha M, Sundarrajan S, Abdul Haroon Rashid SSA, Kumar AS, Ramakrishna S. Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers (Basel) 2022;14:2219. [PMID: 35683893 DOI: 10.3390/polym14112219] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Cai M, Yang H, Shen L, Nie S, Mao Z, Gao C, Zhu Y, Song J. Implantable Thermal Therapeutic Device with Precise Temperature Control Enabled by Foldable Electronics and Heat-Insulating Pads. Research 2022;2022:1-11. [DOI: 10.34133/2022/9787296] [Reference Citation Analysis]
17 Wang L, Fei Z, Qi Y, Zhang C, Zhao L, Jiang Z, Maeda R. Overview of Human Kinetic Energy Harvesting and Application. ACS Appl Energy Mater . [DOI: 10.1021/acsaem.2c00703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Al-suhaimi EA, Aljafary MA, Alfareed TM, Alshuyeh HA, Alhamid GM, Sonbol B, Almofleh A, Alkulaifi FM, Altwayan RK, Alharbi JN, Binmahfooz NM, Alhasani ES, Tombuloglu H, Rasdan AS, lardhi AA, Baykal A, Homeida AM. Nanogenerator-Based Sensors for Energy Harvesting From Cardiac Contraction. Front Energy Res 2022;10:900534. [DOI: 10.3389/fenrg.2022.900534] [Reference Citation Analysis]
19 Sarra M, Ayda B, Hamadi K, Olfa K. Enhancing electrical and mechanical by Sn doping in BCZT for high performance nanogenerators. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD) 2022. [DOI: 10.1109/ssd54932.2022.9955961] [Reference Citation Analysis]
20 Frias-cacho X, Castro M, Nguyen D, Grolleau A, Feller J. A Review of In-Service Coating Health Monitoring Technologies: Towards “Smart” Neural-Like Networks for Condition-Based Preventive Maintenance. Coatings 2022;12:565. [DOI: 10.3390/coatings12050565] [Reference Citation Analysis]
21 Wang C, Shi Q, Lee C. Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials (Basel) 2022;12:1366. [PMID: 35458075 DOI: 10.3390/nano12081366] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
22 Wang S, Zhang L, Wang L, He Y, Wu M. Fluorinated Barium Titanate Nanoparticles for Wearable Piezoelectric Power Generation. ACS Appl Nano Mater 2022;5:3352-60. [DOI: 10.1021/acsanm.1c03777] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Khurana V, Gupta D. Pristine Polymer-Based Piezoelectric Nanogenerators: Energy Harvesters and Self-Powered Systems. Trans Indian Natl Acad Eng 2022;7:115-145. [DOI: 10.1007/s41403-021-00290-3] [Reference Citation Analysis]
24 Dudem B, Dharmasena RDIG, Riaz R, Vivekananthan V, Wijayantha KGU, Lugli P, Petti L, Silva SRP. Wearable Triboelectric Nanogenerator from Waste Materials for Autonomous Information Transmission via Morse Code. ACS Appl Mater Interfaces 2022;14:5328-37. [PMID: 35049272 DOI: 10.1021/acsami.1c20984] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
25 Rumjit NP, Thomas P, Lai CW, Wong YH, Johan MRB. Multiresponsive Supercapacitor for Future Energy Storage Applications. Encyclopedia of Energy Storage 2022. [DOI: 10.1016/b978-0-12-819723-3.00013-5] [Reference Citation Analysis]
26 Tat T, Chen K, Nashalian A, Chen J. Wearable physical sensors. Wearable Physical, Chemical and Biological Sensors 2022. [DOI: 10.1016/b978-0-12-821661-3.00004-5] [Reference Citation Analysis]
27 Wang L, Zhang J, Wu X, Zhu J. Advances in the enzymatic biofuel cell powered sensing systems for tumor diagnosis and regulation. TrAC Trends in Analytical Chemistry 2022;146:116476. [DOI: 10.1016/j.trac.2021.116476] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Khan I, Akhtar S, Ahmad Khan MK. Lifestyle-based health awareness using digital gadgets and online interactive platforms. NeuroPharmac J 2021. [DOI: 10.37881/1.638] [Reference Citation Analysis]
29 Guo X, He T, Zhang Z, Luo A, Wang F, Ng EJ, Zhu Y, Liu H, Lee C. Artificial Intelligence-Enabled Caregiving Walking Stick Powered by Ultra-Low-Frequency Human Motion. ACS Nano 2021;15:19054-69. [PMID: 34308631 DOI: 10.1021/acsnano.1c04464] [Cited by in Crossref: 34] [Cited by in F6Publishing: 42] [Article Influence: 34.0] [Reference Citation Analysis]
30 Zheng Y, Omar R, Hu Z, Duong T, Wang J, Haick H. Bioinspired Triboelectric Nanosensors for Self-Powered Wearable Applications. ACS Biomater Sci Eng 2021. [PMID: 34961316 DOI: 10.1021/acsbiomaterials.1c01106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Ba YY, Bao JF, Liu XT, Li XW, Deng HT, Wen DL, Zhang XS. Electron-Ion Coupling Mechanism to Construct Stable Output Performance Nanogenerator. Research (Wash D C) 2021;2021:9817062. [PMID: 34870228 DOI: 10.34133/2021/9817062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Nag A, Simorangkir RBVB, Sapra S, Buckley JL, O'flynn B, Liu Z, Mukhopadhyay SC. Reduced Graphene Oxide for the Development of Wearable Mechanical Energy-Harvesters: A Review. IEEE Sensors J 2021;21:26415-25. [DOI: 10.1109/jsen.2021.3118565] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Gabris MA, Ping J. Carbon nanomaterial-based nanogenerators for harvesting energy from environment. Nano Energy 2021;90:106494. [DOI: 10.1016/j.nanoen.2021.106494] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
34 Sun Y, Zheng Y, Wang R, Fan J, Liu Y. Direct-current piezoelectric nanogenerator based on two-layer zinc oxide nanorod arrays with equal c-axis orientation for energy harvesting. Chemical Engineering Journal 2021;426:131262. [DOI: 10.1016/j.cej.2021.131262] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
35 Chen Z, Yu J, Zeng H, Chen Z, Tao K, Wu J, Li Y. An Electret/Hydrogel-Based Tactile Sensor Boosted by Micro-Patterned and Electrostatic Promoting Methods with Flexibility and Wide-Temperature Tolerance. Micromachines (Basel) 2021;12:1462. [PMID: 34945313 DOI: 10.3390/mi12121462] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Ji W, Zhu J, Wu W, Wang N, Wang J, Wu J, Wu Q, Wang X, Yu C, Wei G, Li L, Huo F. Wearable Sweat Biosensors Refresh Personalized Health/Medical Diagnostics. Research (Wash D C) 2021;2021:9757126. [PMID: 34778790 DOI: 10.34133/2021/9757126] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
37 Fernandez SV, Cai F, Chen S, Suh E, Tiepelt J, McIntosh R, Marcus C, Acosta D, Mejorado D, Dagdeviren C. On-Body Piezoelectric Energy Harvesters through Innovative Designs and Conformable Structures. ACS Biomater Sci Eng 2021. [PMID: 34735770 DOI: 10.1021/acsbiomaterials.1c00800] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Sun M, Li Z, Yang C, Lv Y, Yuan L, Shang C, Liang S, Guo B, Liu Y, Li Z, Luo D. Nanogenerator-based devices for biomedical applications. Nano Energy 2021;89:106461. [DOI: 10.1016/j.nanoen.2021.106461] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
39 Zhang W, You L, Meng X, Wang B, Lin D. Recent Advances on Conducting Polymers Based Nanogenerators for Energy Harvesting. Micromachines (Basel) 2021;12:1308. [PMID: 34832720 DOI: 10.3390/mi12111308] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Manchi P, Graham SA, Patnam H, Alluri NR, Kim SJ, Yu JS. LiTaO3-Based Flexible Piezoelectric Nanogenerators for Mechanical Energy Harvesting. ACS Appl Mater Interfaces 2021;13:46526-36. [PMID: 34546725 DOI: 10.1021/acsami.1c10116] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
41 Liu L, Guo X, Lee C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021;88:106304. [DOI: 10.1016/j.nanoen.2021.106304] [Cited by in Crossref: 67] [Cited by in F6Publishing: 77] [Article Influence: 67.0] [Reference Citation Analysis]
42 Vidal JV, Slabov V, Kholkin AL, Dos Santos MPS. Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review. Nanomicro Lett 2021;13:199. [PMID: 34542731 DOI: 10.1007/s40820-021-00713-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 17.0] [Reference Citation Analysis]
43 Sun Z, Zhu M, Lee C. Progress in the Triboelectric Human–Machine Interfaces (HMIs)-Moving from Smart Gloves to AI/Haptic Enabled HMI in the 5G/IoT Era. Nanoenergy Advances 2021;1:81-121. [DOI: 10.3390/nanoenergyadv1010005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 22.0] [Reference Citation Analysis]
44 Ning C, Dong K, Gao W, Sheng F, Cheng R, Jiang Y, Yi J, Ye C, Peng X, Wang ZL. Dual-mode thermal-regulating and self-powered pressure sensing hybrid smart fibers. Chemical Engineering Journal 2021;420:129650. [DOI: 10.1016/j.cej.2021.129650] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
45 Li Z, Wang Q, Hu H, Zheng W, Gao C. Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury. Biomed Mater 2021;16. [PMID: 34384071 DOI: 10.1088/1748-605X/ac1d3c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
46 Chen P, Wu P, Wan X, Wang Q, Xu C, Yang M, Feng J, Hu B, Luo Z. Ultrasound-driven electrical stimulation of peripheral nerves based on implantable piezoelectric thin film nanogenerators. Nano Energy 2021;86:106123. [DOI: 10.1016/j.nanoen.2021.106123] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 21.0] [Reference Citation Analysis]
47 Yang HJ, Lee J, Seo SH, Jeong B, Lee B, Do WJ, Kim JH, Cho JY, Jo A, Jeong HJ, Jeong SY, Kim G, Lee G, Shin Y, Ko H, Han JT, Park JH. Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy 2021;86:106083. [DOI: 10.1016/j.nanoen.2021.106083] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
48 Ippili S, Jella V, Thomas AM, Yoon S. The Recent Progress on Halide Perovskite-Based Self-Powered Sensors Enabled by Piezoelectric and Triboelectric Effects. Nanoenergy Advances 2021;1:3-31. [DOI: 10.3390/nanoenergyadv1010002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
49 Jiang C, Li X, Lian SWM, Ying Y, Ho JS, Ping J. Wireless Technologies for Energy Harvesting and Transmission for Ambient Self-Powered Systems. ACS Nano 2021;15:9328-54. [PMID: 34124880 DOI: 10.1021/acsnano.1c02819] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
50 Wu M, Gao Z, Yao K, Hou S, Liu Y, Li D, He J, Huang X, Song E, Yu J, Yu X. Thin, soft, skin-integrated foam-based triboelectric nanogenerators for tactile sensing and energy harvesting. Materials Today Energy 2021;20:100657. [DOI: 10.1016/j.mtener.2021.100657] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 24.0] [Reference Citation Analysis]
51 Hourdakis E, Kaidatzis A, Niarchos D. “Shadow effect” photodetector with linear output voltage vs light intensity. Journal of Applied Physics 2021;129:203102. [DOI: 10.1063/5.0048655] [Reference Citation Analysis]
52 Qu X, Liu Y, Liu Z, Li Z. Assistive devices for the people with disabilities enabled by triboelectric nanogenerators. J Phys Mater 2021;4:034015. [DOI: 10.1088/2515-7639/ac0092] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
53 Zou Y, Bo L, Li Z. Recent progress in human body energy harvesting for smart bioelectronic system. Fundamental Research 2021;1:364-82. [DOI: 10.1016/j.fmre.2021.05.002] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 49.0] [Reference Citation Analysis]
54 Wu H, Tatarenko A, Bichurin M, Wang Y. A multiferroic module for biomechanical energy harvesting. Nano Energy 2021;83:105777. [DOI: 10.1016/j.nanoen.2021.105777] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
55 Yu D, Zheng Z, Liu J, Xiao H, Huangfu G, Guo Y. Superflexible and Lead-Free Piezoelectric Nanogenerator as a Highly Sensitive Self-Powered Sensor for Human Motion Monitoring. Nanomicro Lett 2021;13:117. [PMID: 34138363 DOI: 10.1007/s40820-021-00649-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 21.0] [Reference Citation Analysis]
56 Guo H, Wan J, Wang H, Wu H, Xu C, Miao L, Han M, Zhang H. Self-Powered Intelligent Human-Machine Interaction for Handwriting Recognition. Research (Wash D C) 2021;2021:4689869. [PMID: 33880448 DOI: 10.34133/2021/4689869] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
57 Lan N, Hao M, Niu CM, Cui H, Wang Y, Zhang T, Fang P, Chou CH. Next-Generation Prosthetic Hand: from Biomimetic to Biorealistic. Research (Wash D C) 2021;2021:4675326. [PMID: 34104890 DOI: 10.34133/2021/4675326] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
58 Soin N, Fishlock SJ, Kelsey C, Smith S. Triboelectric Effect Enabled Self-Powered, Point-of-Care Diagnostics: Opportunities for Developing ASSURED and REASSURED Devices. Micromachines (Basel) 2021;12:337. [PMID: 33810006 DOI: 10.3390/mi12030337] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
59 Shi Q, Sun Z, Zhang Z, Lee C. Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research (Wash D C) 2021;2021:6849171. [PMID: 33728410 DOI: 10.34133/2021/6849171] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 25.0] [Reference Citation Analysis]
60 Bhide A, Ganguly A, Parupudi T, Ramasamy M, Muthukumar S, Prasad S. Next-Generation Continuous Metabolite Sensing toward Emerging Sensor Needs. ACS Omega 2021;6:6031-40. [PMID: 33718694 DOI: 10.1021/acsomega.0c06209] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
61 Sengupta A, Das S, Dasgupta S, Sengupta P, Datta P. Flexible Nanogenerator from Electrospun PVDF-Polycarbazole Nanofiber Membranes for Human Motion Energy-Harvesting Device Applications. ACS Biomater Sci Eng 2021;7:1673-85. [PMID: 33683096 DOI: 10.1021/acsbiomaterials.0c01730] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
62 Sahu M, Vivekananthan V, Hajra S, Khatua DK, Kim S. Porosity modulated piezo-triboelectric hybridized nanogenerator for sensing small energy impacts. Applied Materials Today 2021;22:100900. [DOI: 10.1016/j.apmt.2020.100900] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
63 Oliveira HPD. Wearable Nanogenerators: Working Principle and Self-Powered Biosensors Applications. Electrochem 2021;2:118-34. [DOI: 10.3390/electrochem2010010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Lu Y, Yan Y, Yu X, Zhou X, Feng S, Xu C, Zheng H, Yang Z, Li L, Liu K, Lin S. Polarized Water Driven Dynamic PN Junction-Based Direct-Current Generator. Research (Wash D C) 2021;2021:7505638. [PMID: 33623921 DOI: 10.34133/2021/7505638] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
65 Kim MP, Um DS, Shin YE, Ko H. High-Performance Triboelectric Devices via Dielectric Polarization: A Review. Nanoscale Res Lett 2021;16:35. [PMID: 33580327 DOI: 10.1186/s11671-021-03492-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 29.0] [Reference Citation Analysis]
66 Cheng X, Liu Z, Jin T, Zhang F, Zhang H, Zhang Y. Bioinspired design and assembly of a multilayer cage-shaped sensor capable of multistage load bearing and collapse prevention. Nanotechnology 2021;32:155506. [PMID: 33348323 DOI: 10.1088/1361-6528/abd581] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
67 Stuart T, Cai L, Burton A, Gutruf P. Wireless and battery-free platforms for collection of biosignals. Biosens Bioelectron 2021;178:113007. [PMID: 33556807 DOI: 10.1016/j.bios.2021.113007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 25.0] [Reference Citation Analysis]
68 Liu J, Yan D, Zhang Y. Mechanics of unusual soft network materials with rotatable structural nodes. Journal of the Mechanics and Physics of Solids 2021;146:104210. [DOI: 10.1016/j.jmps.2020.104210] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 35.0] [Reference Citation Analysis]
69 Butt Z, Aziz MS, Aamir M, Syed AS, Akhtar J. Next-generation self-powered nanosensors. Nanosensors for Smart Manufacturing 2021. [DOI: 10.1016/b978-0-12-823358-0.00023-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Kumar A, Joshi N. Self-powered environmental monitoring gas sensors: Piezoelectric and triboelectric approaches. Nanobatteries and Nanogenerators 2021. [DOI: 10.1016/b978-0-12-821548-7.00018-x] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
71 Tsikriteas ZM, Roscow JI, Bowen CR, Khanbareh H. Flexible ferroelectric wearable devices for medical applications. iScience 2021;24:101987. [PMID: 33490897 DOI: 10.1016/j.isci.2020.101987] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
72 Chandrasekhar A, Vivekananthan V, Khandelwal G, Kim W, Kim S. Green energy from working surfaces: a contact electrification–enabled data theft protection and monitoring smart table. Materials Today Energy 2020;18:100544. [DOI: 10.1016/j.mtener.2020.100544] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
73 Sun Y, Liu Y, Zheng Y, Li Z, Fan J, Wang L, Liu X, Liu J, Shou W. Enhanced Energy Harvesting Ability of ZnO/PAN Hybrid Piezoelectric Nanogenerators. ACS Appl Mater Interfaces 2020;12:54936-45. [PMID: 33216535 DOI: 10.1021/acsami.0c14490] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 14.0] [Reference Citation Analysis]
74 Ippili S, Jella V, Eom S, Hong S, Yoon S. Light-Driven Piezo- and Triboelectricity in Organic–Inorganic Metal Trihalide Perovskite toward Mechanical Energy Harvesting and Self-powered Sensor Application. ACS Appl Mater Interfaces 2020;12:50472-83. [DOI: 10.1021/acsami.0c15009] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
75 Liu H, Zhang G, Zheng X, Chen F, Duan H. Emerging miniaturized energy storage devices for microsystem applications: from design to integration. Int J Extrem Manuf 2020;2:042001. [DOI: 10.1088/2631-7990/abba12] [Cited by in Crossref: 50] [Cited by in F6Publishing: 57] [Article Influence: 25.0] [Reference Citation Analysis]
76 Miao Q, Liu C, Zhang N, Lu K, Gu H, Jiao J, Zhang J, Wang Z, Zhou X. Toward Self-Powered Inertial Sensors Enabled by Triboelectric Effect. ACS Appl Electron Mater 2020;2:3072-87. [DOI: 10.1021/acsaelm.0c00644] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
77 Wang P, Hu M, Wang H, Chen Z, Feng Y, Wang J, Ling W, Huang Y. The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. Adv Sci (Weinh) 2020;7:2001116. [PMID: 33101851 DOI: 10.1002/advs.202001116] [Cited by in Crossref: 78] [Cited by in F6Publishing: 86] [Article Influence: 39.0] [Reference Citation Analysis]
78 Zheng Q, Tang Q, Wang ZL, Li Z. Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol 2021;18:7-21. [PMID: 32895536 DOI: 10.1038/s41569-020-0426-4] [Cited by in Crossref: 103] [Cited by in F6Publishing: 112] [Article Influence: 51.5] [Reference Citation Analysis]
79 Cheong ST, Li J, Ung COL, Tang D, Hu H. Building an innovation system of medical devices in China: Drivers, barriers, and strategies for sustainability. SAGE Open Med 2020;8:2050312120938218. [PMID: 32733676 DOI: 10.1177/2050312120938218] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
80 Timana J, Montufar C, Ccorahua R, Vela EA. Self-Powered Triboelectric Nanosensors for Soft Endoscopic and Catheter Applications. 2020 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) 2020. [DOI: 10.1109/marss49294.2020.9307923] [Reference Citation Analysis]
81 Zhao J, Bu T, Zhang X, Pang Y, Li W, Zhang Z, Liu G, Wang ZL, Zhang C. Intrinsically Stretchable Organic-Tribotronic-Transistor for Tactile Sensing. Research (Wash D C) 2020;2020:1398903. [PMID: 32676585 DOI: 10.34133/2020/1398903] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
82 Lu Y, Gao Q, Yu X, Zheng H, Shen R, Hao Z, Yan Y, Zhang P, Wen Y, Yang G, Lin S. Interfacial Built-In Electric Field-Driven Direct Current Generator Based on Dynamic Silicon Homojunction. Research (Wash D C) 2020;2020:5714754. [PMID: 32607498 DOI: 10.34133/2020/5714754] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
83 Mi H, Li H, Jing X, He P, Feng P, Tao X, Liu Y, Liu C, Shen C. Silk and Silk Composite Aerogel-Based Biocompatible Triboelectric Nanogenerators for Efficient Energy Harvesting. Ind Eng Chem Res 2020;59:12399-408. [DOI: 10.1021/acs.iecr.0c01117] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
84 Oh HJ, Bae JH, Park YK, Song J, Kim DK, Lee W, Kim M, Heo KJ, Kim Y, Kim SH, Yeang BJ, Lim SJ. A Highly Porous Nonwoven Thermoplastic Polyurethane/Polypropylene-Based Triboelectric Nanogenerator for Energy Harvesting by Human Walking. Polymers (Basel) 2020;12:E1044. [PMID: 32370254 DOI: 10.3390/polym12051044] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
85 Tan P, Zhao C, Fan Y, Li Z; School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China, Department of Biomedical Engineering, School of Medical Engineering, Foshan University, Foshan 528000, China. . Acta Phys Sin 2020;69:178704. [DOI: 10.7498/aps.69.20201012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]