BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Michel-Todó L, Bigey P, Reche PA, Pinazo MJ, Gascón J, Alonso-Padilla J. Design of an Epitope-Based Vaccine Ensemble for Animal Trypanosomiasis by Computational Methods. Vaccines (Basel) 2020;8:E130. [PMID: 32188062 DOI: 10.3390/vaccines8010130] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Pyasi S, Sharma V, Dipti K, Jonniya NA, Nayak D. Immunoinformatics Approach to Design Multi-Epitope- Subunit Vaccine against Bovine Ephemeral Fever Disease. Vaccines (Basel) 2021;9:925. [PMID: 34452050 DOI: 10.3390/vaccines9080925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Sun B, Zhang J, Wang J, Liu Y, Sun H, Lu Z, Chen L, Ding X, Pan J, Hu C, Yang S, Jiang D, Yang K. Comparative Immunoreactivity Analyses of Hantaan Virus Glycoprotein-Derived MHC-I Epitopes in Vaccination. Vaccines 2022;10:564. [DOI: 10.3390/vaccines10040564] [Reference Citation Analysis]
3 Joshi A, Pathak DC, Mannan MA, Kaushik V. In-silico designing of epitope-based vaccine against the seven banded grouper nervous necrosis virus affecting fish species. Netw Model Anal Health Inform Bioinform 2021;10:37. [PMID: 34094807 DOI: 10.1007/s13721-021-00315-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Mugunthan SP, Harish MC. Multi-epitope-Based Vaccine Designed by Targeting Cytoadherence Proteins of Mycoplasma gallisepticum. ACS Omega 2021;6:13742-55. [PMID: 34095666 DOI: 10.1021/acsomega.1c01032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
5 Mugunthan SP, Mani Chandra H. A Computational Reverse Vaccinology Approach for the Design and Development of Multi-Epitopic Vaccine Against Avian Pathogen Mycoplasma gallisepticum. Front Vet Sci 2021;8:721061. [PMID: 34765664 DOI: 10.3389/fvets.2021.721061] [Reference Citation Analysis]
6 Queiroz AMV, Oliveira JWF, Moreno CJ, Guérin DMA, Silva MS. VLP-Based Vaccines as a Suitable Technology to Target Trypanosomatid Diseases. Vaccines (Basel) 2021;9:220. [PMID: 33807516 DOI: 10.3390/vaccines9030220] [Reference Citation Analysis]
7 Robleda-Castillo R, Ros-Lucas A, Martinez-Peinado N, Alonso-Padilla J. An Overview of Current Uses and Future Opportunities for Computer-Assisted Design of Vaccines for Neglected Tropical Diseases. Adv Appl Bioinform Chem 2021;14:25-47. [PMID: 33623396 DOI: 10.2147/AABC.S258759] [Reference Citation Analysis]
8 Ros-Lucas A, Correa-Fiz F, Bosch-Camós L, Rodriguez F, Alonso-Padilla J. Computational Analysis of African Swine Fever Virus Protein Space for the Design of an Epitope-Based Vaccine Ensemble. Pathogens 2020;9:1078. [PMID: 33371523 DOI: 10.3390/pathogens9121078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Rajavel A, Heinrich F, Schmitt AO, Gültas M. Identifying Cattle Breed-Specific Partner Choice of Transcription Factors during the African Trypanosomiasis Disease Progression Using Bioinformatics Analysis. Vaccines (Basel) 2020;8:E246. [PMID: 32456126 DOI: 10.3390/vaccines8020246] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]