BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Versteeg L, Almutairi MM, Hotez PJ, Pollet J. Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines (Basel) 2019;7:E122. [PMID: 31547081 DOI: 10.3390/vaccines7040122] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Sokolow SH, Nova N, Jones IJ, Wood CL, Lafferty KD, Garchitorena A, Hopkins SR, Lund AJ, Macdonald AJ, Leboa C, Peel AJ, Mordecai EA, Howard ME, Buck JC, Lopez-carr D, Barry M, Bonds MH, De Leo GA. Ecological and socioeconomic factors associated with the human burden of environmentally mediated pathogens: a global analysis. The Lancet Planetary Health 2022;6:e870-e879. [DOI: 10.1016/s2542-5196(22)00248-0] [Reference Citation Analysis]
2 Duthie MS, Machado BAS, Badaró R, Kaye PM, Reed SG. Leishmaniasis Vaccines: Applications of RNA Technology and Targeted Clinical Trial Designs. Pathogens 2022;11:1259. [DOI: 10.3390/pathogens11111259] [Reference Citation Analysis]
3 Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022;7:166. [PMID: 35597779 DOI: 10.1038/s41392-022-01007-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 Bajwa HUR, Khan MK, Abbas Z, Riaz R, Rehman TU, Abbas RZ, Aleem MT, Abbas A, Almutairi MM, Alshammari FA, Alraey Y, Alouffi A. Nanoparticles: Synthesis and Their Role as Potential Drug Candidates for the Treatment of Parasitic Diseases. Life 2022;12:750. [DOI: 10.3390/life12050750] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Prakash G, Shokr A, Willemen N, Bashir SM, Shin SR, Hassan S. Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2022;184:114197. [PMID: 35288219 DOI: 10.1016/j.addr.2022.114197] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
6 Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M, He H, Chang J, Liang XJ, Weng Y, Huang Y. mRNA vaccines for COVID-19 and diverse diseases. J Control Release 2022;345:314-33. [PMID: 35331783 DOI: 10.1016/j.jconrel.2022.03.032] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
7 Kumar R, Srivastava V, Baindara P, Ahmad A. Thermostable vaccines: an innovative concept in vaccine development. Expert Rev Vaccines 2022. [PMID: 35285366 DOI: 10.1080/14760584.2022.2053678] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Kalita P, Tripathi T. Methodological advances in the design of peptide-based vaccines. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.03.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Gohda E; Okayama University 1-1-1 Tsushima-naka, Kita-ku, Okayama, Okayama 700-8530, Japan. Effectiveness of and Immune Responses to SARS-CoV-2 mRNA Vaccines and Their Mechanisms. JDR 2022;17:7-20. [DOI: 10.20965/jdr.2022.p0007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Tarab-Ravski D, Stotsky-Oterin L, Peer D. Delivery strategies of RNA therapeutics to leukocytes. J Control Release 2022:S0168-3659(22)00030-X. [PMID: 35041904 DOI: 10.1016/j.jconrel.2022.01.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
11 Khan NT, Zinnia MA, Islam ABMMK. Modeling mRNA-based vaccine YFV.E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach. J Biomol Struct Dyn 2022;:1-22. [PMID: 34994279 DOI: 10.1080/07391102.2021.2024253] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Lopez-Cantu DO, Wang X, Carrasco-Magallanes H, Afewerki S, Zhang X, Bonventre JV, Ruiz-Esparza GU. From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. Nanomicro Lett 2022;14:41. [PMID: 34981278 DOI: 10.1007/s40820-021-00771-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
13 Hoque H, Sumaiya, Hasan M, Rahaman MM, Jewel GNA, Prodhan SH. Immunoinformatics guided design of a next generation epitope-based vaccine against Kaposi Sarcoma. Informatics in Medicine Unlocked 2022;31:100986. [DOI: 10.1016/j.imu.2022.100986] [Reference Citation Analysis]
14 Ishaqat A, Herrmann A. Polymers Strive for Accuracy: From Sequence-Defined Polymers to mRNA Vaccines against COVID-19 and Polymers in Nucleic Acid Therapeutics. J Am Chem Soc 2021;143:20529-45. [PMID: 34841867 DOI: 10.1021/jacs.1c08484] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Baptista B, Carapito R, Laroui N, Pichon C, Sousa F. mRNA, a Revolution in Biomedicine. Pharmaceutics 2021;13:2090. [PMID: 34959371 DOI: 10.3390/pharmaceutics13122090] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
16 Kandi V, Suvvari TK, Vadakedath S, Godishala V. Microbes, Clinical trials, Drug Discovery, and Vaccine Development: The Current Perspectives. Borneo J Pharm 2021;4:311-23. [DOI: 10.33084/bjop.v4i4.2571] [Reference Citation Analysis]
17 Chavda VP, Pandya A, Pulakkat S, Soniwala M, Patravale V. Lymphatic filariasis vaccine development: neglected for how long? Expert Rev Vaccines 2021;:1-12. [PMID: 34633881 DOI: 10.1080/14760584.2021.1990760] [Reference Citation Analysis]
18 Perera DJ, Ndao M. Promising Technologies in the Field of Helminth Vaccines. Front Immunol 2021;12:711650. [PMID: 34489961 DOI: 10.3389/fimmu.2021.711650] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
19 Rawal K, Sinha R, Abbasi BA, Chaudhary A, Nath SK, Kumari P, Preeti P, Saraf D, Singh S, Mishra K, Gupta P, Mishra A, Sharma T, Gupta S, Singh P, Sood S, Subramani P, Dubey AK, Strych U, Hotez PJ, Bottazzi ME. Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Sci Rep 2021;11:17626. [PMID: 34475453 DOI: 10.1038/s41598-021-96863-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
20 Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021;:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Hayon J, Weatherhead J, Hotez PJ, Bottazzi ME, Zhan B. Advances in vaccine development for human trichuriasis. Parasitology 2021;:1-12. [PMID: 33757603 DOI: 10.1017/S0031182021000500] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
22 Folliero V, Zannella C, Chianese A, Stelitano D, Ambrosino A, De Filippis A, Galdiero M, Franci G, Galdiero M. Application of Dendrimers for Treating Parasitic Diseases. Pharmaceutics 2021;13:343. [PMID: 33808016 DOI: 10.3390/pharmaceutics13030343] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
23 Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, Wolski H, Wlodkowic D. The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics 2021;11:1690-702. [PMID: 33408775 DOI: 10.7150/thno.53691] [Cited by in Crossref: 53] [Cited by in F6Publishing: 58] [Article Influence: 53.0] [Reference Citation Analysis]
24 Chalapareddy SK, Sajid A, Saxena M, Arora K, Guha R, Arora G. Emerging therapeutic modalities against malaria. Translational Biotechnology 2021. [DOI: 10.1016/b978-0-12-821972-0.00018-6] [Reference Citation Analysis]
25 Pourseif MM, Parvizpour S, Jafari B, Dehghani J, Naghili B, Omidi Y. A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: development of self-amplifying mRNA and peptide vaccines. Bioimpacts 2021;11:65-84. [PMID: 33469510 DOI: 10.34172/bi.2021.11] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
26 Kumar R, Kharbikar BN. Lyophilized yeast powder for adjuvant free thermostable vaccine delivery.. [DOI: 10.1101/2020.11.30.401885] [Reference Citation Analysis]
27 Ramamurthy D, Nundalall T, Cingo S, Mungra N, Karaan M, Naran K, Barth S. Recent advances in immunotherapies against infectious diseases. Immunotherapy Advances 2021;1:ltaa007. [DOI: 10.1093/immadv/ltaa007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
28 Brown S, Brown T, Cederna PS, Rohrich RJ. The Race for a COVID-19 Vaccine: Current Trials, Novel Technologies, and Future Directions. Plast Reconstr Surg Glob Open 2020;8:e3206. [PMID: 33173705 DOI: 10.1097/GOX.0000000000003206] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
29 McManus DP. Recent Progress in the Development of Liver Fluke and Blood Fluke Vaccines. Vaccines (Basel) 2020;8:E553. [PMID: 32971734 DOI: 10.3390/vaccines8030553] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
30 Dammes N, Peer D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci 2020;41:755-75. [PMID: 32893005 DOI: 10.1016/j.tips.2020.08.004] [Cited by in Crossref: 84] [Cited by in F6Publishing: 90] [Article Influence: 42.0] [Reference Citation Analysis]
31 Zeng C, Zhang C, Walker PG, Dong Y. Formulation and Delivery Technologies for mRNA Vaccines. Curr Top Microbiol Immunol 2020. [PMID: 32483657 DOI: 10.1007/82_2020_217] [Cited by in Crossref: 58] [Cited by in F6Publishing: 25] [Article Influence: 29.0] [Reference Citation Analysis]
32 Okay S, Özge Özcan Ö, Karahan M; 1 Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Turkey, 2 Department of Molecular Neuroscience, Institute of Health Sciences, Üsküdar University, Istanbul, Turkey, 3 Department of Nutrition and Dietetics, Faculty of Health Sciences, Üsküdar University, Istanbul, Turkey. . AIMS Biophysics 2020;7:323-38. [DOI: 10.3934/biophy.2020023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
33 Kalyanasundaram R, Khatri V, Chauhan N. Advances in Vaccine Development for Human Lymphatic Filariasis. Trends Parasitol 2020;36:195-205. [PMID: 31864894 DOI: 10.1016/j.pt.2019.11.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
34 Poveda C, Biter AB, Bottazzi ME, Strych U. Establishing Preferred Product Characterization for the Evaluation of RNA Vaccine Antigens. Vaccines (Basel) 2019;7:E131. [PMID: 31569760 DOI: 10.3390/vaccines7040131] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]