BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Perotti M, Perez L. Virus-Like Particles and Nanoparticles for Vaccine Development against HCMV. Viruses 2019;12:E35. [PMID: 31905677 DOI: 10.3390/v12010035] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Wong TY, Russ BP, Lee KS, Miller OA, Kang J, Cooper M, Winters MT, Rodriguez-Aponte SA, Dalvie NC, Johnston RS, Rader NA, Wong ZY, Cyphert HA, Martinez I, Shaligram U, Batwal S, Lothe R, Chandrasekaran R, Nagar G, Rajurkar M, Rao H, Bevere JR, Barbier M, Love JC, Damron FH. RBD-VLP Vaccines Adjuvanted with Alum or SWE Protect K18-hACE2 Mice against SARS-CoV-2 VOC Challenge. mSphere 2022;:e0024322. [PMID: 35968964 DOI: 10.1128/msphere.00243-22] [Reference Citation Analysis]
2 Atalah J, Espina G, Blamey L, Muñoz-Ibacache SA, Blamey JM. Advantages of Using Extremophilic Bacteria for the Biosynthesis of Metallic Nanoparticles and Its Potential for Rare Earth Element Recovery. Front Microbiol 2022;13:855077. [PMID: 35387087 DOI: 10.3389/fmicb.2022.855077] [Reference Citation Analysis]
3 Yu M, Jin Y, Zhang S, Xu J, Zhang J. microRNA, a Subtle Indicator of Human Cytomegalovirus against Host Immune Cells. Vaccines 2022;10:144. [DOI: 10.3390/vaccines10020144] [Reference Citation Analysis]
4 Lopez-Cantu DO, Wang X, Carrasco-Magallanes H, Afewerki S, Zhang X, Bonventre JV, Ruiz-Esparza GU. From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. Nanomicro Lett 2022;14:41. [PMID: 34981278 DOI: 10.1007/s40820-021-00771-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
5 Mohanty E, Mohanty A. Role of artificial intelligence in peptide vaccine design against RNA viruses. Inform Med Unlocked 2021;26:100768. [PMID: 34722851 DOI: 10.1016/j.imu.2021.100768] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Markarian NM, Abrahamyan L. AMDV Vaccine: Challenges and Perspectives. Viruses 2021;13:1833. [PMID: 34578415 DOI: 10.3390/v13091833] [Reference Citation Analysis]
7 Kumar M, Kumari N, Thakur N, Bhatia SK, Saratale GD, Ghodake G, Mistry BM, Alavilli H, Kishor DS, Du X, Chung SM. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. Plants (Basel) 2021;10:1213. [PMID: 34203729 DOI: 10.3390/plants10061213] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
8 Esposito S, Chiopris G, Messina G, D'Alvano T, Perrone S, Principi N. Prevention of Congenital Cytomegalovirus Infection with Vaccines: State of the Art. Vaccines (Basel) 2021;9:523. [PMID: 34069321 DOI: 10.3390/vaccines9050523] [Reference Citation Analysis]
9 Galitska G, Coscia A, Forni D, Steinbrueck L, De Meo S, Biolatti M, De Andrea M, Cagliani R, Leone A, Bertino E, Schulz T, Santoni A, Landolfo S, Sironi M, Cerboni C, Dell'Oste V. Genetic Variability of Human Cytomegalovirus Clinical Isolates Correlates With Altered Expression of Natural Killer Cell-Activating Ligands and IFN-γ. Front Immunol 2021;12:532484. [PMID: 33897679 DOI: 10.3389/fimmu.2021.532484] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Xu Y, Zhang Z, Shi J, Liu X, Tang W. Recent developments of synthesis and biological activity of sultone scaffolds in medicinal chemistry. Arabian Journal of Chemistry 2021;14:103037. [DOI: 10.1016/j.arabjc.2021.103037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Queiroz AMV, Oliveira JWF, Moreno CJ, Guérin DMA, Silva MS. VLP-Based Vaccines as a Suitable Technology to Target Trypanosomatid Diseases. Vaccines (Basel) 2021;9:220. [PMID: 33807516 DOI: 10.3390/vaccines9030220] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Perotti M, Marcandalli J, Demurtas D, Sallusto F, Perez L. Rationally designed Human Cytomegalovirus gB nanoparticle vaccine with improved immunogenicity. PLoS Pathog 2020;16:e1009169. [PMID: 33370407 DOI: 10.1371/journal.ppat.1009169] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
13 Comas-Garcia M, Colunga-Saucedo M, Rosales-Mendoza S. The Role of Virus-Like Particles in Medical Biotechnology. Mol Pharm 2020;17:4407-20. [PMID: 33147978 DOI: 10.1021/acs.molpharmaceut.0c00828] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
14 Pan J, Cui Z. Self-Assembled Nanoparticles: Exciting Platforms for Vaccination. Biotechnol J 2020;15:e2000087. [PMID: 33411412 DOI: 10.1002/biot.202000087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
15 Liekniņa I, Černova D, Rūmnieks J, Tārs K. Novel ssRNA phage VLP platform for displaying foreign epitopes by genetic fusion. Vaccine 2020;38:6019-26. [PMID: 32713683 DOI: 10.1016/j.vaccine.2020.07.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Vogel M, Bachmann MF. Special Issue "Virus-Like Particle Vaccines". Viruses 2020;12:E872. [PMID: 32784958 DOI: 10.3390/v12080872] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]