BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pestka JJ. Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins (Basel) 2010;2:1300-17. [PMID: 22069639 DOI: 10.3390/toxins2061300] [Cited by in Crossref: 114] [Cited by in F6Publishing: 107] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Sanden M, Jørgensen S, Hemre G, Ørnsrud R, Sissener NH. Zebrafish (Danio rerio) as a model for investigating dietary toxic effects of deoxynivalenol contamination in aquaculture feeds. Food and Chemical Toxicology 2012;50:4441-8. [DOI: 10.1016/j.fct.2012.08.042] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 4.0] [Reference Citation Analysis]
2 Del Favero G, Zeugswetter M, Kiss E, Marko D. Endoplasmic Reticulum Adaptation and Autophagic Competence Shape Response to Fluid Shear Stress in T24 Bladder Cancer Cells. Front Pharmacol 2021;12:647350. [PMID: 34012396 DOI: 10.3389/fphar.2021.647350] [Reference Citation Analysis]
3 Hooft JM, Ferreira C, Lumsden JS, Sulyok M, Krska R, Bureau DP. The effects of naturally occurring or purified deoxynivalenol (DON) on growth performance, nutrient utilization and histopathology of rainbow trout (Oncorhynchus mykiss). Aquaculture 2019;505:319-32. [DOI: 10.1016/j.aquaculture.2019.02.032] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
4 Stanek C, Reinhardt N, Diesing A, Nossol C, Kahlert S, Panther P, Kluess J, Rothkötter H, Kuester D, Brosig B, Kersten S, Dänicke S. A chronic oral exposure of pigs with deoxynivalenol partially prevents the acute effects of lipopolysaccharides on hepatic histopathology and blood clinical chemistry. Toxicology Letters 2012;215:193-200. [DOI: 10.1016/j.toxlet.2012.10.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
5 Pierron A, Alassane-Kpembi I, Oswald IP. Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porcine Health Manag 2016;2:21. [PMID: 28405447 DOI: 10.1186/s40813-016-0041-2] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 9.0] [Reference Citation Analysis]
6 Barbouche R, Gaigé S, Airault C, Poirot K, Dallaporta M, Troadec JD, Abysique A. The food contaminant deoxynivalenol provokes metabolic impairments resulting in non-alcoholic fatty liver (NAFL) in mice. Sci Rep 2020;10:12072. [PMID: 32694515 DOI: 10.1038/s41598-020-68712-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Riahi I, Marquis V, Pérez-Vendrell AM, Brufau J, Esteve-Garcia E, Ramos AJ. Effects of Deoxynivalenol-Contaminated Diets on Metabolic and Immunological Parameters in Broiler Chickens. Animals (Basel) 2021;11:E147. [PMID: 33440734 DOI: 10.3390/ani11010147] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
8 Pierron A, Bracarense APFL, Cossalter A, Laffitte J, Schwartz-zimmermann HE, Schatzmayr G, Pinton P, Moll W, Oswald IP. Deepoxy-deoxynivalenol retains some immune-modulatory properties of the parent molecule deoxynivalenol in piglets. Arch Toxicol 2018;92:3381-9. [DOI: 10.1007/s00204-018-2293-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
9 Wang S, Wu K, Xue D, Zhang C, Rajput SA, Qi D. Mechanism of deoxynivalenol mediated gastrointestinal toxicity: Insights from mitochondrial dysfunction. Food Chem Toxicol 2021;153:112214. [PMID: 33930483 DOI: 10.1016/j.fct.2021.112214] [Reference Citation Analysis]
10 Korsnes MS, Røed SS, Tranulis MA, Espenes A, Christophersen B. Yessotoxin triggers ribotoxic stress. Toxicol In Vitro 2014;28:975-81. [PMID: 24780217 DOI: 10.1016/j.tiv.2014.04.013] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
11 Wu W, He K, Zhou HR, Berthiller F, Adam G, Sugita-Konishi Y, Watanabe M, Krantis A, Durst T, Zhang H, Pestka JJ. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse. Toxicol Appl Pharmacol 2014;278:107-15. [PMID: 24793808 DOI: 10.1016/j.taap.2014.04.016] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 4.8] [Reference Citation Analysis]
12 Guo P, Qiao F, Huang D, Wu Q, Chen T, Badawy S, Cheng G, Hao H, Xie S, Wang X. MiR-155-5p plays as a "janus" in the expression of inflammatory cytokines induced by T-2 toxin. Food Chem Toxicol 2020;140:111258. [PMID: 32240701 DOI: 10.1016/j.fct.2020.111258] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Akbari P, Braber S, Gremmels H, Koelink PJ, Verheijden KA, Garssen J, Fink-Gremmels J. Deoxynivalenol: a trigger for intestinal integrity breakdown. FASEB J 2014;28:2414-29. [PMID: 24568843 DOI: 10.1096/fj.13-238717] [Cited by in Crossref: 83] [Cited by in F6Publishing: 78] [Article Influence: 10.4] [Reference Citation Analysis]
14 Wu S, Liu Y, Duan Y, Wang F, Guo F, Yan F, Yang X, Yang X. Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens. J Anim Sci Biotechnol 2018;9:74. [PMID: 30338065 DOI: 10.1186/s40104-018-0286-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
15 Alizadeh A, Braber S, Akbari P, Kraneveld A, Garssen J, Fink-Gremmels J. Deoxynivalenol and Its Modified Forms: Are There Major Differences? Toxins (Basel) 2016;8:E334. [PMID: 27854268 DOI: 10.3390/toxins8110334] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
16 Hu Z, Sun Y, Chen J, Zhao Y, Qiao H, Chen R, Wen X, Deng Y, Wen J. Deoxynivalenol globally affects the selection of 3' splice sites in human cells by suppressing the splicing factors, U2AF1 and SF1. RNA Biol 2020;17:584-95. [PMID: 31992135 DOI: 10.1080/15476286.2020.1719750] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Liu J, Zanardi S, Powers S, Suman M. Development and practical application in the cereal food industry of a rapid and quantitative lateral flow immunoassay for deoxynivalenol. Food Control 2012;26:88-91. [DOI: 10.1016/j.foodcont.2012.01.005] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
18 Li L, Wang Y, Xu Y, Chen L, Fang Q, Yan X. Atorvastatin Inhibits CD68 Expression in Aortic Root Through a GRP78-Involved Pathway. Cardiovasc Drugs Ther 2014;28:523-32. [DOI: 10.1007/s10557-014-6556-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
19 Springler A, Hessenberger S, Reisinger N, Kern C, Nagl V, Schatzmayr G, Mayer E. Deoxynivalenol and its metabolite deepoxy-deoxynivalenol: multi-parameter analysis for the evaluation of cytotoxicity and cellular effects. Mycotoxin Res 2017;33:25-37. [PMID: 27817099 DOI: 10.1007/s12550-016-0260-z] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
20 Sun LH, Lei MY, Zhang NY, Zhao L, Krumm CS, Qi DS. Hepatotoxic effects of mycotoxin combinations in mice. Food Chem Toxicol 2014;74:289-93. [PMID: 25445755 DOI: 10.1016/j.fct.2014.10.020] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 7.3] [Reference Citation Analysis]
21 Del Favero G, Woelflingseder L, Braun D, Puntscher H, Kütt M, Dellafiora L, Warth B, Pahlke G, Dall’asta C, Adam G, Marko D. Response of intestinal HT-29 cells to the trichothecene mycotoxin deoxynivalenol and its sulfated conjugates. Toxicology Letters 2018;295:424-37. [DOI: 10.1016/j.toxlet.2018.07.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
22 Ren D, Diao E, Hou H, Dong H. Degradation and ozonolysis pathway elucidation of deoxynivalenol. Toxicon 2020;174:13-8. [DOI: 10.1016/j.toxicon.2019.11.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Liao P, Liao M, Li L, Tan B, Yin Y. Effect of deoxynivalenol on apoptosis, barrier function, and expression levels of genes involved in nutrient transport, mitochondrial biogenesis and function in IPEC-J2 cells. Toxicol Res (Camb) 2017;6:866-77. [PMID: 30090549 DOI: 10.1039/c7tx00202e] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 3.2] [Reference Citation Analysis]
24 Peng Z, Chen L, Nüssler AK, Liu L, Yang W. Current sights for mechanisms of deoxynivalenol-induced hepatotoxicity and prospective views for future scientific research: A mini review: DON-induced hepatotoxicity and prospective views. J Appl Toxicol 2017;37:518-29. [DOI: 10.1002/jat.3428] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
25 Pierron A, Neves M, Puel S, Lippi Y, Soler L, Miller JD, Oswald IP. Intestinal toxicity of the new type A trichothecenes, NX and 3ANX. Chemosphere 2022;288:132415. [PMID: 34600008 DOI: 10.1016/j.chemosphere.2021.132415] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Cao L, Jiang Y, Zhu L, Xu W, Chu X, Zhang Y, Rahman SU, Feng S, Li Y, Wu J, Wang X. Deoxynivalenol Induces Caspase-8-Mediated Apoptosis through the Mitochondrial Pathway in Hippocampal Nerve Cells of Piglet. Toxins (Basel) 2021;13:73. [PMID: 33498252 DOI: 10.3390/toxins13020073] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Pierron A, Mimoun S, Murate LS, Loiseau N, Lippi Y, Bracarense AP, Schatzmayr G, He JW, Zhou T, Moll WD, Oswald IP. Microbial biotransformation of DON: molecular basis for reduced toxicity. Sci Rep 2016;6:29105. [PMID: 27381510 DOI: 10.1038/srep29105] [Cited by in Crossref: 84] [Cited by in F6Publishing: 79] [Article Influence: 14.0] [Reference Citation Analysis]
28 Huttunen K, Korkalainen M. Microbial Secondary Metabolites and Knowledge on Inhalation Effects. In: Viegas C, Viegas S, Gomes A, Täubel M, Sabino R, editors. Exposure to Microbiological Agents in Indoor and Occupational Environments. Cham: Springer International Publishing; 2017. pp. 213-34. [DOI: 10.1007/978-3-319-61688-9_10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Critical Reviews in Food Science and Nutrition 2020;60:1346-74. [DOI: 10.1080/10408398.2019.1571479] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 11.7] [Reference Citation Analysis]
30 Flannery BM, He K, Pestka JJ. Deoxynivalenol-induced weight loss in the diet-induced obese mouse is reversible and PKR-independent. Toxicol Lett 2013;221:9-14. [PMID: 23707852 DOI: 10.1016/j.toxlet.2013.05.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
31 Wan D, Wang X, Wu Q, Lin P, Pan Y, Sattar A, Huang L, Ahmad I, Zhang Y, Yuan Z. Integrated Transcriptional and Proteomic Analysis of Growth Hormone Suppression Mediated by Trichothecene T-2 Toxin in Rat GH3 Cells. Toxicol Sci 2015;147:326-38. [DOI: 10.1093/toxsci/kfv131] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
32 Suman M, Manzitti A, Catellani D. A design of experiments approach to studying deoxynivalenol and deoxynivalenol-3-glucoside evolution throughout industrial production of wholegrain crackers exploiting LC-MS/MS techniques. World Mycotoxin Journal 2012;5:241-9. [DOI: 10.3920/wmj2012.1422] [Cited by in Crossref: 22] [Article Influence: 2.2] [Reference Citation Analysis]
33 Wojtacha P, Trybowski W, Podlasz P, Żmigrodzka M, Tyburski J, Polak-Śliwińska M, Jakimiuk E, Bakuła T, Baranowski M, Żuk-Gołaszewska K, Zielonka Ł, Obremski K. Effects of a Low Dose of T-2 Toxin on the Percentage of T and B Lymphocytes and Cytokine Secretion in the Porcine Ileal Wall. Toxins (Basel) 2021;13:277. [PMID: 33924586 DOI: 10.3390/toxins13040277] [Reference Citation Analysis]
34 Sun Z, Hu Y, Zhou Y, Jiang N, Hu S, Li L, Li T. tRNA-derived fragments from wheat are potentially involved in susceptibility to Fusarium head blight. BMC Plant Biol 2022;22:3. [PMID: 34979923 DOI: 10.1186/s12870-021-03393-9] [Reference Citation Analysis]
35 Gauthier T, Waché Y, Laffitte J, Taranu I, Saeedikouzehkonani N, Mori Y, Oswald IP. Deoxynivalenol impairs the immune functions of neutrophils. Mol Nutr Food Res 2013;57:1026-36. [PMID: 23427020 DOI: 10.1002/mnfr.201200755] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
36 Zha A, Cui Z, Qi M, Liao S, Yin J, Tan B, Liao P. Baicalin-Copper Complex Modulates Gut Microbiota, Inflammatory Responses, and Hormone Secretion in DON-Challenged Piglets. Animals (Basel) 2020;10:E1535. [PMID: 32878107 DOI: 10.3390/ani10091535] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Liao Y, Peng Z, Chen L, Nüssler AK, Liu L, Yang W. Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach? Food and Chemical Toxicology 2018;112:342-54. [DOI: 10.1016/j.fct.2018.01.013] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 11.0] [Reference Citation Analysis]
38 Hlavová K, Štěpánová H, Šťastný K, Levá L, Hodkovicová N, Vícenová M, Matiašovic J, Faldyna M. Minimal Concentrations of Deoxynivalenol Reduce Cytokine Production in Individual Lymphocyte Populations in Pigs. Toxins (Basel) 2020;12:E190. [PMID: 32197345 DOI: 10.3390/toxins12030190] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
39 Woelflingseder L, Warth B, Vierheilig I, Schwartz-Zimmermann H, Hametner C, Nagl V, Novak B, Šarkanj B, Berthiller F, Adam G, Marko D. The Fusarium metabolite culmorin suppresses the in vitro glucuronidation of deoxynivalenol. Arch Toxicol 2019;93:1729-43. [PMID: 31049613 DOI: 10.1007/s00204-019-02459-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
40 García GR, Payros D, Pinton P, Dogi CA, Laffitte J, Neves M, González Pereyra ML, Cavaglieri LR, Oswald IP. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Arch Toxicol 2018;92:983-93. [DOI: 10.1007/s00204-017-2083-x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
41 da Silva E, Bracarense A, Oswald I. Mycotoxins and oxidative stress: where are we? World Mycotoxin Journal 2018;11:113-34. [DOI: 10.3920/wmj2017.2267] [Cited by in Crossref: 54] [Article Influence: 13.5] [Reference Citation Analysis]
42 Schumann B, Winkler J, Mickenautsch N, Warnken T, Dänicke S. Effects of deoxynivalenol (DON), zearalenone (ZEN), and related metabolites on equine peripheral blood mononuclear cells (PBMC) in vitro and background occurrence of these toxins in horses. Mycotoxin Res 2016;32:153-61. [PMID: 27255919 DOI: 10.1007/s12550-016-0250-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
43 Novak B, Vatzia E, Springler A, Pierron A, Gerner W, Reisinger N, Hessenberger S, Schatzmayr G, Mayer E. Bovine Peripheral Blood Mononuclear Cells Are More Sensitive to Deoxynivalenol Than Those Derived from Poultry and Swine. Toxins (Basel) 2018;10:E152. [PMID: 29641442 DOI: 10.3390/toxins10040152] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
44 Arunachalam C, Doohan FM. Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett 2013;217:149-58. [PMID: 23274714 DOI: 10.1016/j.toxlet.2012.12.003] [Cited by in Crossref: 84] [Cited by in F6Publishing: 75] [Article Influence: 8.4] [Reference Citation Analysis]
45 Segura-Wang M, Grenier B, Ilic S, Ruczizka U, Dippel M, Bünger M, Hackl M, Nagl V. MicroRNA Expression Profiling in Porcine Liver, Jejunum and Serum upon Dietary DON Exposure Reveals Candidate Toxicity Biomarkers. Int J Mol Sci 2021;22:12043. [PMID: 34769473 DOI: 10.3390/ijms222112043] [Reference Citation Analysis]
46 Przybylska-Gornowicz B, Tarasiuk M, Lewczuk B, Prusik M, Ziółkowska N, Zielonka Ł, Gajęcki M, Gajęcka M. The effects of low doses of two Fusarium toxins, zearalenone and deoxynivalenol, on the pig jejunum. A light and electron microscopic study. Toxins (Basel) 2015;7:4684-705. [PMID: 26569306 DOI: 10.3390/toxins7114684] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
47 Mackei M, Orbán K, Molnár A, Pál L, Dublecz K, Husvéth F, Neogrády Z, Mátis G. Cellular Effects of T-2 Toxin on Primary Hepatic Cell Culture Models of Chickens. Toxins (Basel) 2020;12:E46. [PMID: 31941063 DOI: 10.3390/toxins12010046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
48 He K, Zhou HR, Pestka JJ. Mechanisms for ribotoxin-induced ribosomal RNA cleavage. Toxicol Appl Pharmacol 2012;265:10-8. [PMID: 23022514 DOI: 10.1016/j.taap.2012.09.017] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
49 Liao Y, Peng Z, Chen L, Liu L, Wu Q, Yang W. Roles of microRNAs and prospective view of competing endogenous RNAs in mycotoxicosis. Mutation Research/Reviews in Mutation Research 2019;782:108285. [DOI: 10.1016/j.mrrev.2019.108285] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
50 Alassane-kpembi I, Puel O, Pinton P, Cossalter A, Chou T, Oswald IP. Co-exposure to low doses of the food contaminants deoxynivalenol and nivalenol has a synergistic inflammatory effect on intestinal explants. Arch Toxicol 2017;91:2677-87. [DOI: 10.1007/s00204-016-1902-9] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 8.7] [Reference Citation Analysis]
51 Bertero A, Spicer L, Caloni F. Fusarium mycotoxins and in vitro species-specific approach with porcine intestinal and brain in vitro barriers: A review. Food and Chemical Toxicology 2018;121:666-75. [DOI: 10.1016/j.fct.2018.09.050] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
52 Ghareeb K, Awad WA, Sid-Ahmed OE, Böhm J. Insights on the host stress, fear and growth responses to the deoxynivalenol feed contaminant in broiler chickens. PLoS One 2014;9:e87727. [PMID: 24498179 DOI: 10.1371/journal.pone.0087727] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
53 Wentzel JF, Lombard MJ, Du Plessis LH, Zandberg L. Evaluation of the cytotoxic properties, gene expression profiles and secondary signalling responses of cultured cells exposed to fumonisin B1, deoxynivalenol and zearalenone mycotoxins. Arch Toxicol 2017;91:2265-82. [PMID: 27757495 DOI: 10.1007/s00204-016-1872-y] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
54 Wen J, Mu P, Deng Y. Mycotoxins: cytotoxicity and biotransformation in animal cells. Toxicol Res (Camb) 2016;5:377-87. [PMID: 30090353 DOI: 10.1039/c5tx00293a] [Cited by in Crossref: 35] [Cited by in F6Publishing: 16] [Article Influence: 5.8] [Reference Citation Analysis]
55 Wu Q, Wang X, Wan D, Li J, Yuan Z. Crosstalk of JNK1-STAT3 is critical for RAW264.7 cell survival. Cell Signal 2014;26:2951-60. [PMID: 25269780 DOI: 10.1016/j.cellsig.2014.09.013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
56 McLaughlin JE, Bin-Umer MA, Widiez T, Finn D, McCormick S, Tumer NE. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin. PLoS One 2015;10:e0130204. [PMID: 26057253 DOI: 10.1371/journal.pone.0130204] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
57 Lebrun B, Tardivel C, Félix B, Abysique A, Troadec JD, Gaigé S, Dallaporta M. Dysregulation of energy balance by trichothecene mycotoxins: Mechanisms and prospects. Neurotoxicology 2015;49:15-27. [PMID: 25956358 DOI: 10.1016/j.neuro.2015.04.009] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
58 Zhou H, Guog T, Dai H, Yu Y, Zhang Y, Ma L. Deoxynivalenol: toxicological profiles and perspective views for future research. World Mycotoxin Journal 2020;13:179-88. [DOI: 10.3920/wmj2019.2462] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
59 Dänicke S, Beineke A, Rautenschlein S, Valenta H, Kersten S, Gauly M. Ascaridia galli infection affects pullets differently when feed is contaminated with the Fusarium toxin deoxynivalenol (DON). Veterinary Parasitology 2013;198:351-63. [DOI: 10.1016/j.vetpar.2013.09.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
60 Dänicke S, Meyer U, Winkler J, Ulrich S, Frahm J, Kersten S, Valenta H, Rehage J, Häussler S, Sauerwein H, Locher L. Haematological and immunological adaptations of non-pregnant, non-lactating dairy cows to a high-energetic diet containing mycotoxins. Archives of Animal Nutrition 2015;70:1-16. [DOI: 10.1080/1745039x.2015.1117561] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
61 Liu Y, Guo Y, Ma C, Zhang D, Wang C, Yang Q. Transcriptome analysis of maize resistance to Fusarium graminearum. BMC Genomics 2016;17:477. [PMID: 27352627 DOI: 10.1186/s12864-016-2780-5] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
62 Pan X, Whitten DA, Wu M, Chan C, Wilkerson CG, Pestka JJ. Early phosphoproteomic changes in the mouse spleen during deoxynivalenol-induced ribotoxic stress. Toxicol Sci 2013;135:129-43. [PMID: 23811945 DOI: 10.1093/toxsci/kft145] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
63 Long H, Xin Z, Zhang F, Zhai Z, Ni X, Chen J, Yang K, Liao P, Zhang L, Xiao Z, Sindaye D, Deng B. The cytoprotective effects of dihydromyricetin and associated metabolic pathway changes on deoxynivalenol treated IPEC-J2 cells. Food Chem 2021;338:128116. [PMID: 33092008 DOI: 10.1016/j.foodchem.2020.128116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
64 Ekwomadu TI, Akinola SA, Mwanza M. Fusarium Mycotoxins, Their Metabolites (Free, Emerging, and Masked), Food Safety Concerns, and Health Impacts. Int J Environ Res Public Health 2021;18:11741. [PMID: 34831498 DOI: 10.3390/ijerph182211741] [Reference Citation Analysis]
65 Del Favero G, Janker L, Neuditschko B, Hohenbichler J, Kiss E, Woelflingseder L, Gerner C, Marko D. Exploring the dermotoxicity of the mycotoxin deoxynivalenol: combined morphologic and proteomic profiling of human epidermal cells reveals alteration of lipid biosynthesis machinery and membrane structural integrity relevant for skin barrier function. Arch Toxicol 2021;95:2201-21. [PMID: 33890134 DOI: 10.1007/s00204-021-03042-y] [Reference Citation Analysis]
66 Bracarense APFL, Pierron A, Pinton P, Gerez JR, Schatzmayr G, Moll WD, Zhou T, Oswald IP. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: In vivo analysis in piglets. Food Chem Toxicol 2020;140:111241. [PMID: 32194137 DOI: 10.1016/j.fct.2020.111241] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
67 Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017;60:1-19. [PMID: 28864287 DOI: 10.1016/j.preteyeres.2017.08.003] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 7.2] [Reference Citation Analysis]
68 Liao P, Li Y, Li M, Chen X, Yuan D, Tang M, Xu K. Baicalin alleviates deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets. Food and Chemical Toxicology 2020;140:111326. [DOI: 10.1016/j.fct.2020.111326] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
69 Wu Q, Qin Z, Kuca K, You L, Zhao Y, Liu A, Musilek K, Chrienova Z, Nepovimova E, Oleksak P, Wu W, Wang X. An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 2020;94:3645-69. [PMID: 32910237 DOI: 10.1007/s00204-020-02899-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
70 Zhao Y, Tang S, Lin R, Zheng T, Li D, Chen X, Zhu J, Wen J, Deng Y. Deoxynivalenol Exposure Suppresses Adipogenesis by Inhibiting the Expression of Peroxisome Proliferator-Activated Receptor Gamma 2 (PPARγ2) in 3T3-L1 Cells. Int J Mol Sci 2020;21:E6300. [PMID: 32878272 DOI: 10.3390/ijms21176300] [Reference Citation Analysis]
71 Yue J, Guo D, Gao X, Wang J, Nepovimova E, Wu W, Kuca K. Deoxynivalenol (Vomitoxin)-Induced Anorexia Is Induced by the Release of Intestinal Hormones in Mice. Toxins (Basel) 2021;13:512. [PMID: 34437383 DOI: 10.3390/toxins13080512] [Reference Citation Analysis]
72 Clark ES, Flannery BM, Gardner EM, Pestka JJ. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses. Toxins (Basel) 2015;7:4199-215. [PMID: 26492270 DOI: 10.3390/toxins7104199] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
73 Faltusová Z, Chrpová J, Salačová L, Džuman Z, Pavel J, Zachariášová M, Hajšlová J, Ovesná J. Effect of Fusarium culmorum Tri Gene Transcription on Deoxynivalenol and D3G Levels in Two Different Barley Cultivars. J Phytopathol 2015;163:593-603. [DOI: 10.1111/jph.12359] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Pestka JJ, Clark ES, Schwartz-Zimmermann HE, Berthiller F. Sex Is a Determinant for Deoxynivalenol Metabolism and Elimination in the Mouse. Toxins (Basel) 2017;9:E240. [PMID: 28777306 DOI: 10.3390/toxins9080240] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
75 Lu Q, Luo JY, Ruan HN, Wang CJ, Yang MH. Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review. Sci Total Environ 2022;806:151192. [PMID: 34710421 DOI: 10.1016/j.scitotenv.2021.151192] [Reference Citation Analysis]
76 Huang CH, Chen YT, Lin JH, Wang HT. Acrolein induces ribotoxic stress in human cancer cells regardless of p53 status. Toxicol In Vitro 2018;52:265-71. [PMID: 29964147 DOI: 10.1016/j.tiv.2018.06.022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
77 Vatzia E, Pierron A, Saalmüller A, Mayer E, Gerner W. Deoxynivalenol Affects Proliferation and Expression of Activation-Related Molecules in Major Porcine T-Cell Subsets. Toxins (Basel) 2019;11:E644. [PMID: 31694331 DOI: 10.3390/toxins11110644] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
78 Gao X, Mu P, Zhu X, Chen X, Tang S, Wu Y, Miao X, Wang X, Wen J, Deng Y. Dual Function of a Novel Bacterium, Slackia sp. D-G6: Detoxifying Deoxynivalenol and Producing the Natural Estrogen Analogue, Equol. Toxins (Basel) 2020;12:E85. [PMID: 31991913 DOI: 10.3390/toxins12020085] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
79 Wan D, Wu Q, Qu W, Liu G, Wang X. Pyrrolidine Dithiocarbamate (PDTC) Inhibits DON-Induced Mitochondrial Dysfunction and Apoptosis via the NF-κB/iNOS Pathway. Oxid Med Cell Longev 2018;2018:1324173. [PMID: 30595795 DOI: 10.1155/2018/1324173] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
80 Hooft JM, Bureau DP. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem Toxicol 2021;157:112616. [PMID: 34662691 DOI: 10.1016/j.fct.2021.112616] [Reference Citation Analysis]
81 Liu X, Huang D, Guo P, Wu Q, Dai M, Cheng G, Hao H, Xie S, Yuan Z, Wang X. PKA/CREB and NF-κB pathway regulates AKNA transcription: A novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology 2017;392:81-95. [DOI: 10.1016/j.tox.2017.10.013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
82 Nossol C, Landgraf P, Kahlert S, Oster M, Isermann B, Dieterich DC, Wimmers K, Dänicke S, Rothkötter HJ. Deoxynivalenol Affects Cell Metabolism and Increases Protein Biosynthesis in Intestinal Porcine Epithelial Cells (IPEC-J2): DON Increases Protein Biosynthesis. Toxins (Basel) 2018;10:E464. [PMID: 30423940 DOI: 10.3390/toxins10110464] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
83 Kozieł MJ, Ziaja M, Piastowska-Ciesielska AW. Intestinal Barrier, Claudins and Mycotoxins. Toxins (Basel) 2021;13:758. [PMID: 34822542 DOI: 10.3390/toxins13110758] [Reference Citation Analysis]
84 Habschied K, Kanižai Šarić G, Krstanović V, Mastanjević K. Mycotoxins-Biomonitoring and Human Exposure. Toxins (Basel) 2021;13:113. [PMID: 33546479 DOI: 10.3390/toxins13020113] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
85 Lewczuk B, Przybylska-Gornowicz B, Gajęcka M, Targońska K, Ziółkowska N, Prusik M, Gajęcki M. Histological structure of duodenum in gilts receiving low doses of zearalenone and deoxynivalenol in feed. Exp Toxicol Pathol 2016;68:157-66. [PMID: 26679981 DOI: 10.1016/j.etp.2015.11.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
86 Riahi I, Pérez-Vendrell AM, Ramos AJ, Brufau J, Esteve-Garcia E, Schulthess J, Marquis V. Biomarkers of Deoxynivalenol Toxicity in Chickens with Special Emphasis on Metabolic and Welfare Parameters. Toxins (Basel) 2021;13:217. [PMID: 33803037 DOI: 10.3390/toxins13030217] [Reference Citation Analysis]
87 Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021;:1-23. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Reference Citation Analysis]
88 Zhang H, Deng X, Zhou C, Wu W, Zhang H. Deoxynivalenol Induces Inflammation in IPEC-J2 Cells by Activating P38 Mapk And Erk1/2. Toxins (Basel) 2020;12:E180. [PMID: 32183221 DOI: 10.3390/toxins12030180] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
89 Yong Y, Li J, Gong D, Yu T, Wu L, Hu C, Liu X, Yu Z, Ma X, Gooneratne R, El-Aty AMA, Chen J, Ju X. ERK1/2 mitogen-activated protein kinase mediates downregulation of intestinal tight junction proteins in heat stress-induced IBD model in pig. J Therm Biol 2021;101:103103. [PMID: 34879918 DOI: 10.1016/j.jtherbio.2021.103103] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Schmeits PC, Volger OL, Zandvliet ET, van Loveren H, Peijnenburg AA, Hendriksen PJ. Assessment of the usefulness of the murine cytotoxic T cell line CTLL-2 for immunotoxicity screening by transcriptomics. Toxicol Lett 2013;217:1-13. [PMID: 23253260 DOI: 10.1016/j.toxlet.2012.12.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
91 Alizadeh A, Braber S, Akbari P, Garssen J, Fink-Gremmels J. Deoxynivalenol Impairs Weight Gain and Affects Markers of Gut Health after Low-Dose, Short-Term Exposure of Growing Pigs. Toxins (Basel) 2015;7:2071-95. [PMID: 26067367 DOI: 10.3390/toxins7062071] [Cited by in Crossref: 67] [Cited by in F6Publishing: 64] [Article Influence: 9.6] [Reference Citation Analysis]
92 Mezzelani A, Landini M, Facchiano F, Raggi ME, Villa L, Molteni M, De Santis B, Brera C, Caroli AM, Milanesi L, Marabotti A. Environment, dysbiosis, immunity and sex-specific susceptibility: a translational hypothesis for regressive autism pathogenesis. Nutr Neurosci 2015;18:145-61. [PMID: 24621061 DOI: 10.1179/1476830513Y.0000000108] [Cited by in Crossref: 31] [Cited by in F6Publishing: 18] [Article Influence: 3.9] [Reference Citation Analysis]
93 Woelflingseder L, Gruber N, Adam G, Marko D. Pro-Inflammatory Effects of NX-3 Toxin Are Comparable to Deoxynivalenol and not Modulated by the Co-Occurring Pro-Oxidant Aurofusarin. Microorganisms 2020;8:E603. [PMID: 32326355 DOI: 10.3390/microorganisms8040603] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
94 Meng Z, Wang L, Liao Y, Peng Z, Li D, Zhou X, Liu S, Li Y, Nüssler AK, Liu L, Hao L, Yang W. The Protective Effect of Heme Oxygenase-1 on Liver Injury Caused by DON-Induced Oxidative Stress and Cytotoxicity. Toxins (Basel) 2021;13:732. [PMID: 34679025 DOI: 10.3390/toxins13100732] [Reference Citation Analysis]
95 Smith MC, Timmins-Schiffman E, Coton M, Coton E, Hymery N, Nunn BL, Madec S. Differential impacts of individual and combined exposures of deoxynivalenol and zearalenone on the HepaRG human hepatic cell proteome. J Proteomics 2018;173:89-98. [PMID: 29208510 DOI: 10.1016/j.jprot.2017.11.025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
96 Gaigé S, Bonnet MS, Tardivel C, Pinton P, Trouslard J, Jean A, Guzylack L, Troadec JD, Dallaporta M. c-Fos immunoreactivity in the pig brain following deoxynivalenol intoxication: focus on NUCB2/nesfatin-1 expressing neurons. Neurotoxicology 2013;34:135-49. [PMID: 23164930 DOI: 10.1016/j.neuro.2012.10.020] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
97 Bensassi F, Gallerne C, Sharaf El Dein O, Lemaire C, Hajlaoui MR, Bacha H. Involvement of mitochondria-mediated apoptosis in deoxynivalenol cytotoxicity. Food and Chemical Toxicology 2012;50:1680-9. [DOI: 10.1016/j.fct.2012.01.015] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 5.0] [Reference Citation Analysis]
98 Cui Y, Liu S, Cui W, Gao D, Zhou W, Luo P. Identification of potential biomarkers and therapeutic targets for human IgA nephropathy and hypertensive nephropathy by bioinformatics analysis. Mol Med Rep 2017;16:3087-94. [PMID: 28713898 DOI: 10.3892/mmr.2017.6996] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
99 Kazan K, Gardiner DM, Manners JM. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 2012;13:399-413. [PMID: 22098555 DOI: 10.1111/j.1364-3703.2011.00762.x] [Cited by in Crossref: 169] [Cited by in F6Publishing: 129] [Article Influence: 15.4] [Reference Citation Analysis]
100 Solhaug A, Karlsøen L, Holme J, Kristoffersen A, Eriksen G. Immunomodulatory effects of individual and combined mycotoxins in the THP-1 cell line. Toxicology in Vitro 2016;36:120-32. [DOI: 10.1016/j.tiv.2016.07.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
101 Xu Y, Chen X, Yu L, Wang Y, Wang H, Wu Z, Wu S, Bao W. SLC4A11 and MFSD3 Gene Expression Changes in Deoxynivalenol Treated IPEC-J2 Cells. Front Genet 2021;12:697883. [PMID: 34367255 DOI: 10.3389/fgene.2021.697883] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
102 Pan X, Whitten DA, Wilkerson CG, Pestka JJ. Dynamic changes in ribosome-associated proteome and phosphoproteome during deoxynivalenol-induced translation inhibition and ribotoxic stress. Toxicol Sci 2014;138:217-33. [PMID: 24284785 DOI: 10.1093/toxsci/kft270] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
103 Crudo F, Varga E, Aichinger G, Galaverna G, Marko D, Dall'Asta C, Dellafiora L. Co-Occurrence and Combinatory Effects of Alternaria Mycotoxins and other Xenobiotics of Food Origin: Current Scenario and Future Perspectives. Toxins (Basel) 2019;11:E640. [PMID: 31684145 DOI: 10.3390/toxins11110640] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
104 Carere J, Hassan YI, Lepp D, Zhou T. The enzymatic detoxification of the mycotoxin deoxynivalenol: identification of DepA from the DON epimerization pathway. Microb Biotechnol 2018;11:1106-11. [PMID: 29148251 DOI: 10.1111/1751-7915.12874] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
105 Pan X, Whitten DA, Wu M, Chan C, Wilkerson CG, Pestka JJ. Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage. Toxicol Appl Pharmacol 2013;268:201-11. [PMID: 23352502 DOI: 10.1016/j.taap.2013.01.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
106 Fruhmann P, Hametner C, Mikula H, Adam G, Krska R, Fröhlich J. Stereoselective Luche reduction of deoxynivalenol and three of its acetylated derivatives at C8. Toxins (Basel) 2014;6:325-36. [PMID: 24434906 DOI: 10.3390/toxins6010325] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
107 Dänicke S, Heymann AK, Oster M, Wimmers K, Tesch T, Bannert E, Bühler S, Kersten S, Frahm J, Kluess J, Kahlert S, Rothkötter HJ, Billenkamp F. Does chronic dietary exposure to the mycotoxin deoxynivalenol affect the porcine hepatic transcriptome when an acute-phase response is initiated through first or second-pass LPS challenge of the liver? Innate Immun 2021;:17534259211030563. [PMID: 34338001 DOI: 10.1177/17534259211030563] [Reference Citation Analysis]
108 Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L; EFSA Panel on Contaminants in the Food Chain (CONTAM). Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017;15:e04718. [PMID: 32625635 DOI: 10.2903/j.efsa.2017.4718] [Cited by in Crossref: 86] [Cited by in F6Publishing: 72] [Article Influence: 17.2] [Reference Citation Analysis]
109 Gao Y, Li S, Bao X, Luo C, Yang H, Wang J, Zhao S, Zheng N. Transcriptional and Proteomic Analysis Revealed a Synergistic Effect of Aflatoxin M1 and Ochratoxin A Mycotoxins on the Intestinal Epithelial Integrity of Differentiated Human Caco-2 Cells. J Proteome Res 2018;17:3128-42. [DOI: 10.1021/acs.jproteome.8b00241] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
110 Akbari P, Braber S, Varasteh S, Alizadeh A, Garssen J, Fink-Gremmels J. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch Toxicol 2017;91:1007-29. [PMID: 27417439 DOI: 10.1007/s00204-016-1794-8] [Cited by in Crossref: 85] [Cited by in F6Publishing: 77] [Article Influence: 14.2] [Reference Citation Analysis]
111 Maresca M. From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins (Basel) 2013;5:784-820. [PMID: 23612752 DOI: 10.3390/toxins5040784] [Cited by in Crossref: 234] [Cited by in F6Publishing: 217] [Article Influence: 26.0] [Reference Citation Analysis]
112 Brera C, Bertazzoni V, Debegnach F, Gregori E, Prantera E, De Santis B. Exposure assessment for Italian population groups to deoxynivalenol deriving from pasta consumption. Toxins (Basel) 2013;5:2293-309. [PMID: 24287568 DOI: 10.3390/toxins5122293] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
113 Chen SS, Li YH, Lin MF. Chronic Exposure to the Fusarium Mycotoxin Deoxynivalenol: Impact on Performance, Immune Organ, and Intestinal Integrity of Slow-Growing Chickens. Toxins (Basel) 2017;9:E334. [PMID: 29053594 DOI: 10.3390/toxins9100334] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
114 Eslamizad S, Yazdanpanah H, Hadian Z, Tsitsimpikou C, Goumenou M, Shojaee AliAbadi MH, Kamalabadi M, Tsatsakis A. Exposure to multiple mycotoxins in domestic and imported rice commercially traded in Tehran and possible risk to public health. Toxicol Rep 2021;8:1856-64. [PMID: 34820291 DOI: 10.1016/j.toxrep.2021.11.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Zhou H, Tang L, Xue KS, Qian H, Sun X, Williams PL, Wang J. Trans-/multi-generational effects of deoxynivalenol on Caenorhabditis elegans. Chemosphere 2018;201:41-9. [DOI: 10.1016/j.chemosphere.2018.02.173] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
116 Male D, Wu W, Mitchell NJ, Bursian S, Pestka JJ, Wu F. Modeling the emetic potencies of food-borne trichothecenes by benchmark dose methodology. Food Chem Toxicol 2016;94:178-85. [PMID: 27292944 DOI: 10.1016/j.fct.2016.06.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]