BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Herrington JS, Gómez-ríos GA, Myers C, Stidsen G, Bell DS. Hunting Molecules in Complex Matrices with SPME Arrows: A Review. Separations 2020;7:12. [DOI: 10.3390/separations7010012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Boyaci E, Reyes-garcés N. Applying green sample preparation techniques to in vivo analysis and metabolomics. Green Approaches for Chemical Analysis 2023. [DOI: 10.1016/b978-0-12-822234-8.00007-x] [Reference Citation Analysis]
2 Gutiérrez-serpa A, Allgaier-díaz DW, Jiménez-abizanda AI, Pino V. Green sorbents in analytical chemistry. Green Approaches for Chemical Analysis 2023. [DOI: 10.1016/b978-0-12-822234-8.00003-2] [Reference Citation Analysis]
3 Casado-carmona FA, Lasarte-aragonés G, Lucena R, Cárdenas S. Green sample preparation techniques in environmental analysis. Green Approaches for Chemical Analysis 2023. [DOI: 10.1016/b978-0-12-822234-8.00002-0] [Reference Citation Analysis]
4 Schanzmann H, Augustini ALRM, Sanders D, Dahlheimer M, Wigger M, Zech P, Sielemann S. Differentiation of Monofloral Honey Using Volatile Organic Compounds by HS-GCxIMS. Molecules 2022;27:7554. [DOI: 10.3390/molecules27217554] [Reference Citation Analysis]
5 Aspromonte J, Lancioni C, Purcaro G. Solid-Phase Microextraction—Gas Chromatography Analytical Strategies for Pesticide Analysis. MPs 2022;5:82. [DOI: 10.3390/mps5050082] [Reference Citation Analysis]
6 Marittimo N, Famiglini G, Palma P, Arigò A, Cappiello A. Enhanced microfluidic open interface for the direct coupling of solid phase microextraction with liquid electron ionization-tandem mass spectrometry. J Chromatogr A 2022;1681:463479. [PMID: 36108353 DOI: 10.1016/j.chroma.2022.463479] [Reference Citation Analysis]
7 Ferracane A, Manousi N, Tranchida PQ, Zachariadis GA, Mondello L, Rosenberg E. Exploring the volatile profile of whiskey samples using solid-phase microextraction Arrow and comprehensive two-dimensional gas chromatography-mass spectrometry. J Chromatogr A 2022;1676:463241. [PMID: 35763950 DOI: 10.1016/j.chroma.2022.463241] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Dugheri S, Mucci N, Cappelli G, Trevisani L, Bonari A, Bucaletti E, Squillaci D, Arcangeli G, Rocha BA. Advanced Solid-Phase Microextraction Techniques and Related Automation: A Review of Commercially Available Technologies. Journal of Analytical Methods in Chemistry 2022;2022:1-15. [DOI: 10.1155/2022/8690569] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
9 Rodinkov OV, Pisarev AY, Moskvin LN, Bugaichenko AS, Nesterenko PN. Sensitivity Increase in Headspace Analysis of Hydrocarbons in Water by Using Online Selective Elimination of Gas Extractant. Separations 2022;9:15. [DOI: 10.3390/separations9010015] [Reference Citation Analysis]
10 Analytical Aspects. Automated Sample Preparation 2022. [DOI: 10.1002/9783527817511.ch4] [Reference Citation Analysis]
11 Mashmoushi N, Larry Campbell J, di Lorenzo R, Scott Hopkins W. Rapid separation of cannabinoid isomer sets using differential mobility spectrometry and mass spectrometry. Analyst 2022;147:2198-2206. [DOI: 10.1039/d1an02327f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Leroux J, Truong TT, Pogson BJ, Mcquinn RP. Detection and analysis of novel and known plant volatile apocarotenoids. Carotenoids: Carotenoid and Apocarotenoid Analysis 2022. [DOI: 10.1016/bs.mie.2022.03.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Patel DI, Roychowdhury T, Jacobsen C, Myers C, Herrington JS, Linford MR. Evaluation of New, Sputtered Carbon SPME Fibers with a Multi-Functional Group Test Mixture. Separations 2021;8:228. [DOI: 10.3390/separations8120228] [Reference Citation Analysis]
14 Starowicz M. Analysis of Volatiles in Food Products. Separations 2021;8:157. [DOI: 10.3390/separations8090157] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Paiva AC, Crucello J, de Aguiar Porto N, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. TrAC Trends in Analytical Chemistry 2021;139:116252. [DOI: 10.1016/j.trac.2021.116252] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 13.0] [Reference Citation Analysis]
16 Lisanti MT, Laboyrie J, Marchand-Marion S, de Revel G, Moio L, Riquier L, Franc C. Minty aroma compounds in red wine: Development of a novel automated HS-SPME-arrow and gas chromatography-tandem mass spectrometry quantification method. Food Chem 2021;361:130029. [PMID: 34077885 DOI: 10.1016/j.foodchem.2021.130029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
17 Emmons RV, Olomukoro AA, Gionfriddo E. Microextraction-based samplers for liquid and tissue analysis. Analytical Sample Preparation With Nano- and Other High-Performance Materials 2021. [DOI: 10.1016/b978-0-12-822139-6.00017-1] [Reference Citation Analysis]
18 Zanella D, Anderson HE, Selby T, Magnuson RH, Liden T, Schug KA. Comparison of headspace solid-phase microextraction high capacity fiber coatings based on dual mass spectrometric and broadband vacuum ultraviolet absorption detection for untargeted analysis of beer volatiles using gas chromatography. Analytica Chimica Acta 2021;1141:91-9. [DOI: 10.1016/j.aca.2020.10.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
19 Trujillo-rodríguez MJ, Pacheco-fernández I, Taima-mancera I, Díaz JHA, Pino V. Evolution and current advances in sorbent-based microextraction configurations. Journal of Chromatography A 2020;1634:461670. [DOI: 10.1016/j.chroma.2020.461670] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
20 Grandy JJ, Murtada K, Belinato JR, Suárez PAO, Pawliszyn J. Development and validation of an improved, thin film solid phase microextraction based, standard gas generating vial for the repeatable generation of gaseous standards. J Chromatogr A 2020;1632:461541. [PMID: 33059176 DOI: 10.1016/j.chroma.2020.461541] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
21 Gionfriddo E, Gómez-Ríos GA. Analysis of food samples made easy by microextraction technologies directly coupled to mass spectrometry. J Mass Spectrom 2021;56:e4665. [PMID: 33098354 DOI: 10.1002/jms.4665] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Moyo B, Gitari M, Tavengwa NT. Application of sorptive micro-extraction techniques for the pre-concentration of antibiotic drug residues from food samples - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020;37:1865-80. [PMID: 33000997 DOI: 10.1080/19440049.2020.1802069] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Gionfriddo E. Development of Alternative Green Sample Preparation Techniques. Separations 2020;7:31. [DOI: 10.3390/separations7020031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]