BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang HX, Zhao YW, Li Z, Liu BS, Zhang D. Development and Application of Aptamer-Based Surface-Enhanced Raman Spectroscopy Sensors in Quantitative Analysis and Biotherapy. Sensors (Basel) 2019;19:E3806. [PMID: 31484403 DOI: 10.3390/s19173806] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Li J, Chen X, Zhu J. DNA functionalized plasmonic nanoassemblies as SERS sensors for environmental analysis. Aggregate 2022. [DOI: 10.1002/agt2.271] [Reference Citation Analysis]
2 Jiang G, Li Y, Liu J, Liu L, Pi F. Progress on aptamer-based SERS sensors for food safety and quality assessment: methodology, current applications and future trends. Crit Rev Food Sci Nutr 2022;:1-18. [PMID: 35943403 DOI: 10.1080/10408398.2022.2108370] [Reference Citation Analysis]
3 Zavyalova E, Tikhonova D, Zhdanov G, Rudakova E, Alferova V, Moiseenko A, Kamzeeva P, Khrulev A, Zalevsky A, Arutyunyan A, Novikov R, Kukushkin V, Aralov A. SERS-based biosensor with Raman-active external responsive element for rapid determination of adenosine monophosphate. Analytica Chimica Acta 2022;1221:340140. [DOI: 10.1016/j.aca.2022.340140] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Jia H, Zhang Z, Fang X, Jiang M, Chen M, Chen S, Gu K, Luo Z, Wu F, Tan W. Recent advances of cell surface modification based on aptamers. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100188] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Xie B, Wang ZP, Zhang R, Zhang Z, He Y. A SERS aptasensor based on porous Au-NC nanoballoons for Staphylococcus aureus detection. Anal Chim Acta 2022;1190:339175. [PMID: 34857128 DOI: 10.1016/j.aca.2021.339175] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Han XX, Rodriguez RS, Haynes CL, Ozaki Y, Zhao B. Surface-enhanced Raman spectroscopy. Nat Rev Methods Primers 2021;1. [DOI: 10.1038/s43586-021-00083-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 23.0] [Reference Citation Analysis]
7 Prakash J, de Oliveira PR, Swart HC, Rumyantseva M, Packirisamy M, Janegitz BC, Li X. Nanomaterial-based surface-enhanced Raman scattering spectroscopy for sensing and diagnostics of gas molecules in environment and healthcare. Sens Diagn 2022. [DOI: 10.1039/d2sd00133k] [Reference Citation Analysis]
8 Xu Z, Wang C, Ma R, Sha Z, Liang F, Sun S. Aptamer-based biosensing through the mapping of encoding upconversion nanoparticles for sensitive CEA detection. Analyst 2022;147:3350-3359. [DOI: 10.1039/d2an00669c] [Reference Citation Analysis]
9 Chen XF, Zhao X, Yang Z. Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing. Mikrochim Acta 2022;189:443. [PMID: 36350388 DOI: 10.1007/s00604-022-05533-w] [Reference Citation Analysis]
10 San Juan AMT, Chavva SR, Tu D, Tircuit M, Coté G, Mabbott S. Synthesis of SERS-active core–satellite nanoparticles using heterobifunctional PEG linkers. Nanoscale Adv 2021;4:258-67. [DOI: 10.1039/d1na00676b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Chauhan N, Saxena K, Tikadar M, Jain U. Recent advances in the design of biosensors based on novel nanomaterials: An insight. Nanotechnology and Precision Engineering 2021;4:045003. [DOI: 10.1063/10.0006524] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
12 He Q, Han Y, Huang Y, Gao J, Gao Y, Han L, Zhang Y. Reusable dual-enhancement SERS sensor based on graphene and hybrid nanostructures for ultrasensitive lead (Ⅱ) detection. Sensors and Actuators B: Chemical 2021;341:130031. [DOI: 10.1016/j.snb.2021.130031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
13 Evtugyn G, Porfireva A, Kulikova T, Hianik T. Recent Achievements in Electrochemical and Surface Plasmon Resonance Aptasensors for Mycotoxins Detection. Chemosensors 2021;9:180. [DOI: 10.3390/chemosensors9070180] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
14 Safar W, Tatar AS, Leray A, Potara M, Liu Q, Edely M, Djaker N, Spadavecchia J, Fu W, Derouich SG, Felidj N, Astilean S, Finot E, Lamy de la Chapelle M. New insight into the aptamer conformation and aptamer/protein interaction by surface-enhanced Raman scattering and multivariate statistical analysis. Nanoscale 2021;13:12443-53. [PMID: 34251385 DOI: 10.1039/d1nr02180j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Samek O, Bernatová S, Dohnal F. The potential of SERS as an AST methodology in clinical settings. Nanophotonics 2021;10:2537-61. [DOI: 10.1515/nanoph-2021-0095] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
16 Armenta S, Esteve-turrillas FA, Garrigues S, Guardia MDL. Smart materials for sample preparation in bioanalysis: A green overview. Sustainable Chemistry and Pharmacy 2021;21:100411. [DOI: 10.1016/j.scp.2021.100411] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
17 Muhammad M, Huang Q. A review of aptamer-based SERS biosensors: Design strategies and applications. Talanta 2021;227:122188. [PMID: 33714469 DOI: 10.1016/j.talanta.2021.122188] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 37.0] [Reference Citation Analysis]
18 Zhang N, Liu B, Cui X, Li Y, Tang J, Wang H, Zhang D, Li Z. Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid. Talanta 2021;223:121729. [PMID: 33303172 DOI: 10.1016/j.talanta.2020.121729] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 14.5] [Reference Citation Analysis]
19 Şahin S, Caglayan MO, Üstündağ Z. A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020;220:121437. [PMID: 32928439 DOI: 10.1016/j.talanta.2020.121437] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
20 Zaitseva SO, Baleeva NS, Zatsepin TS, Myasnyanko IN, Turaev AV, Pozmogova GE, Khrulev AA, Varizhuk AM, Baranov MS, Aralov AV. Short Duplex Module Coupled to G-Quadruplexes Increases Fluorescence of Synthetic GFP Chromophore Analogues. Sensors (Basel) 2020;20:E915. [PMID: 32050425 DOI: 10.3390/s20030915] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Effective SERS substrate obtained by Au deposition at silica surfaces through a top down method. Biophysical Bulletin 2020. [DOI: 10.26565/2075-3810-2020-43-05] [Reference Citation Analysis]