BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vijayavenkataraman S, Zhang S, Thaharah S, Sriram G, Lu WF, Fuh JYH. Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Polymers (Basel) 2018;10:E753. [PMID: 30960678 DOI: 10.3390/polym10070753] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Zhou H, Song Y. Fabrication of Electronics by Electrohydrodynamic Jet Printing. Adv Elect Materials. [DOI: 10.1002/aelm.202200728] [Reference Citation Analysis]
2 Li H, Yu K, Zhang P, Ye Y, Shu Q. A printability study of multichannel nerve guidance conduits using projection-based three-dimensional printing. J Biomater Appl 2022;:8853282221101148. [PMID: 35549934 DOI: 10.1177/08853282221101148] [Reference Citation Analysis]
3 Guo T, Liu P, Du L, Wang H, Ma C, Lin N, Wang Z. Electrohydrodynamic jet printing via low-solute concentration inks for enhanced positioning accuracy. Materials Technology. [DOI: 10.1080/10667857.2022.2072605] [Reference Citation Analysis]
4 Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. Adv Sci (Weinh) 2022;9:e2103875. [PMID: 35182046 DOI: 10.1002/advs.202103875] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
5 Alarcón Apablaza J, Lezcano MF, Godoy Sánchez K, Oporto GH, Dias FJ. Optimal Morphometric Characteristics of a Tubular Polymeric Scaffold to Promote Peripheral Nerve Regeneration: A Scoping Review. Polymers 2022;14:397. [DOI: 10.3390/polym14030397] [Reference Citation Analysis]
6 Lopes B, Sousa P, Alvites R, Branquinho M, Sousa AC, Mendonça C, Atayde LM, Luís AL, Varejão ASP, Maurício AC. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci 2022;23:918. [PMID: 35055104 DOI: 10.3390/ijms23020918] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
7 Hayat U, Raza A, Bilal M, Iqbal HM, Wang J. Biodegradable polymeric conduits: Platform materials for guided nerve regeneration and vascular tissue engineering. Journal of Drug Delivery Science and Technology 2022;67:103014. [DOI: 10.1016/j.jddst.2021.103014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Liu C, Wang Z, Yao X, Wang M, Huang Z, Li X. Sustained Biochemical Signaling and Contact Guidance by Electrospun Bicomponents as Promising Scaffolds for Nerve Tissue Regeneration. ACS Omega 2021;6:33010-7. [PMID: 34901652 DOI: 10.1021/acsomega.1c05117] [Reference Citation Analysis]
9 Wang X, Cao Y, Jing L, Chen S, Leng B, Yang X, Wu Z, Bian J, Banjerdpongchai R, Poofery J, Huang D. Three-Dimensional RAW264.7 Cell Model on Electrohydrodynamic Printed Poly(ε-Caprolactone) Scaffolds for In Vitro Study of Anti-Inflammatory Compounds. ACS Appl Bio Mater 2021;4:7967-78. [PMID: 35006778 DOI: 10.1021/acsabm.1c00889] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021;135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
11 Apablaza JA, Lezcano MF, Lopez Marquez A, Godoy Sánchez K, Oporto GH, Dias FJ. Main Morphological Characteristics of Tubular Polymeric Scaffolds to Promote Peripheral Nerve Regeneration-A Scoping Review. Polymers (Basel) 2021;13:2563. [PMID: 34372166 DOI: 10.3390/polym13152563] [Reference Citation Analysis]
12 Huang Y, Wu W, Liu H, Chen Y, Li B, Gou Z, Li X, Gou M. 3D printing of functional nerve guide conduits. Burns Trauma 2021;9:tkab011. [PMID: 34212061 DOI: 10.1093/burnst/tkab011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Zhang F, Zhang N, Xu Q, Zhang L, Zhang C, Liu H, Yu Z, Zhou S, Feng G, Huang F. Decellularized nerve extracellular matrix/chitosan crosslinked by genipin to prepare a moldable nerve repair material. Cell Tissue Bank 2021. [PMID: 34115245 DOI: 10.1007/s10561-020-09889-2] [Reference Citation Analysis]
14 Rodríguez-Sánchez DN, Pinto GBA, Cartarozzi LP, de Oliveira ALR, Bovolato ALC, de Carvalho M, da Silva JVL, Dernowsek JA, Golim M, Barraviera B, Ferreira RS, Deffune E, Bertanha M, Amorim RM. 3D-printed nerve guidance conduits multi-functionalized with canine multipotent mesenchymal stromal cells promote neuroregeneration after sciatic nerve injury in rats. Stem Cell Res Ther 2021;12:303. [PMID: 34051869 DOI: 10.1186/s13287-021-02315-8] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
15 Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. Tissue Eng Part B Rev 2021. [PMID: 33593147 DOI: 10.1089/ten.TEB.2020.0355] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Zhang H, Pei Z, Wang C, Li M, Zhang H, Qu J. Electrohydrodynamic 3D Printing Scaffolds for Repair of Achilles Tendon Defect in Rats. Tissue Eng Part A 2021. [PMID: 33573468 DOI: 10.1089/ten.TEA.2020.0290] [Reference Citation Analysis]
17 Li Y, Lv S, Yuan H, Ye G, Mu W, Fu Y, Zhang X, Feng Z, He Y, Chen W. Peripheral Nerve Regeneration with 3D Printed Bionic Scaffolds Loading Neural Crest Stem Cell Derived Schwann Cell Progenitors. Adv Funct Mater 2021;31:2010215. [DOI: 10.1002/adfm.202010215] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Mbundi L, González-pérez M, González-pérez F, Juanes-gusano D, Rodríguez-cabello JC. Trends in the Development of Tailored Elastin-Like Recombinamer–Based Porous Biomaterials for Soft and Hard Tissue Applications. Front Mater 2021;7:601795. [DOI: 10.3389/fmats.2020.601795] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
19 E Cheng, Zhang T, Cheng Y, Li J, Zhang Z. High scaling ratio line width reduction and fabrication method with electrohydrodynamic jet printing. Micro & Nano Letters 2021;16:23-9. [DOI: 10.1049/mna2.12003] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Liu S, Sun L, Zhang H, Hu Q, Wang Y, Ramalingam M. High-resolution combinatorial 3D printing of gelatin-based biomimetic triple-layered conduits for nerve tissue engineering. Int J Biol Macromol 2021;166:1280-91. [PMID: 33159941 DOI: 10.1016/j.ijbiomac.2020.11.010] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 He J, Zhang B, Li Z, Mao M, Li J, Han K, Li D. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs. Biofabrication 2020;12:042002. [PMID: 32615543 DOI: 10.1088/1758-5090/aba1fa] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
22 Yu X, Zhang T, Li Y. 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering. Polymers (Basel) 2020;12:E1637. [PMID: 32717878 DOI: 10.3390/polym12081637] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
23 Shie MY, Fang HY, Lin YH, Lee AK, Yu J, Chen YW. Application of piezoelectric cells printing on three-dimensional porous bioceramic scaffold for bone regeneration. Int J Bioprint 2019;5:210. [PMID: 32596544 DOI: 10.18063/ijb.v5i2.1.210] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
24 Vijayavenkataraman S, Kuan LY, Lu WF. 3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants. Materials & Design 2020;191:108602. [DOI: 10.1016/j.matdes.2020.108602] [Cited by in Crossref: 22] [Cited by in F6Publishing: 3] [Article Influence: 11.0] [Reference Citation Analysis]
25 Regas I, Loisel F, Haight H, Menu G, Obert L, Pluvy I. Functionalized nerve conduits for peripheral nerve regeneration: A literature review. Hand Surg Rehabil 2020;39:343-51. [PMID: 32485240 DOI: 10.1016/j.hansur.2020.05.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
26 Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater 2020;106:54-69. [PMID: 32044456 DOI: 10.1016/j.actbio.2020.02.003] [Cited by in Crossref: 98] [Cited by in F6Publishing: 79] [Article Influence: 49.0] [Reference Citation Analysis]
27 Xu Z, Chen Z, Feng W, Huang M, Yang X, Qi Z. Grafted muscle-derived stem cells promote the therapeutic efficiency of epimysium conduits in mice with peripheral nerve gap injury. Artif Organs 2020;44:E214-25. [PMID: 31792982 DOI: 10.1111/aor.13614] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
28 Wang B, Chen X, Ahmad Z, Huang J, Chang M. 3D electrohydrodynamic printing of highly aligned dual-core graphene composite matrices. Carbon 2019;153:285-97. [DOI: 10.1016/j.carbon.2019.07.030] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
29 Vijayavenkataraman S, Kannan S, Cao T, Fuh JYH, Sriram G, Lu WF. 3D-Printed PCL/PPy Conductive Scaffolds as Three-Dimensional Porous Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol 2019;7:266. [PMID: 31750293 DOI: 10.3389/fbioe.2019.00266] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 12.7] [Reference Citation Analysis]
30 Amin K, Moscalu R, Imere A, Murphy R, Barr S, Tan Y, Wong R, Sorooshian P, Zhang F, Stone J, Fildes J, Reid A, Wong J. The future application of nanomedicine and biomimicry in plastic and reconstructive surgery. Nanomedicine 2019;14:2679-96. [DOI: 10.2217/nnm-2019-0119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
31 Zhang B, He J, Lei Q, Li D. Electrohydrodynamic printing of sub-microscale fibrous architectures with improved cell adhesion capacity. Virtual and Physical Prototyping 2020;15:62-74. [DOI: 10.1080/17452759.2019.1662991] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
32 Houshyar S, Bhattacharyya A, Shanks R. Peripheral Nerve Conduit: Materials and Structures. ACS Chem Neurosci 2019;10:3349-65. [PMID: 31273975 DOI: 10.1021/acschemneuro.9b00203] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 17.0] [Reference Citation Analysis]
33 Yan L, Liu S, Qi J, Zhang Z, Zhong J, Li Q, Liu X, Zhu Q, Yao Z, Lu Y, Gu L. Three-dimensional reconstruction of internal fascicles and microvascular structures of human peripheral nerves. Int J Numer Method Biomed Eng 2019;35:e3245. [PMID: 31370097 DOI: 10.1002/cnm.3245] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
34 Zhang S, Sanjairaj V, Chong GL, Fuh YHJ, Lu WF. Computational Design and Optimization of Nerve Guidance Conduits for Improved Mechanical Properties and Permeability. J Biomech Eng 2019. [PMID: 30835270 DOI: 10.1115/1.4043036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
35 Vijayavenkataraman S, Thaharah S, Zhang S, Lu WF, Fuh JYH. Electrohydrodynamic jet 3D-printed PCL/PAA conductive scaffolds with tunable biodegradability as nerve guide conduits (NGCs) for peripheral nerve injury repair. Materials & Design 2019;162:171-84. [DOI: 10.1016/j.matdes.2018.11.044] [Cited by in Crossref: 44] [Cited by in F6Publishing: 20] [Article Influence: 14.7] [Reference Citation Analysis]
36 Vijayavenkataraman S, Thaharah S, Zhang S, Lu WF, Fuh JYH. 3D‐Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair. Artif Organs 2018;43:515-23. [DOI: 10.1111/aor.13360] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
37 Zhang S, Vijayavenkataraman S, Lu WF, Fuh JYH. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication. J Biomed Mater Res 2018;107:1329-51. [DOI: 10.1002/jbm.b.34226] [Cited by in Crossref: 33] [Cited by in F6Publishing: 44] [Article Influence: 8.3] [Reference Citation Analysis]