BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stewart SA, Domínguez-Robles J, McIlorum VJ, Mancuso E, Lamprou DA, Donnelly RF, Larrañeta E. Development of a Biodegradable Subcutaneous Implant for Prolonged Drug Delivery Using 3D Printing. Pharmaceutics 2020;12:E105. [PMID: 32013052 DOI: 10.3390/pharmaceutics12020105] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 35.5] [Reference Citation Analysis]
Number Citing Articles
1 Myung N, Jin S, Cho HJ, Kang H. User-designed device with programmable release profile for localized treatment. Journal of Controlled Release 2022;352:685-699. [DOI: 10.1016/j.jconrel.2022.10.054] [Reference Citation Analysis]
2 Arif ZU, Khalid MY, Zolfagharian A, Bodaghi M. 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. Reactive and Functional Polymers 2022;179:105374. [DOI: 10.1016/j.reactfunctpolym.2022.105374] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
3 Mazarura KR, Kumar P, Choonara YE. Customised 3D printed multi-drug systems: An effective and efficient approach to polypharmacy. Expert Opin Drug Deliv 2022. [PMID: 36059243 DOI: 10.1080/17425247.2022.2121816] [Reference Citation Analysis]
4 Khan A, Andleeb A, Azam M, Tehseen S, Mehmood A, Yar M. Aloe vera and ofloxacin incorporated chitosan hydrogels show antibacterial activity, stimulate angiogenesis and accelerate wound healing in full thickness rat model. J Biomed Mater Res B Appl Biomater 2022. [PMID: 36053925 DOI: 10.1002/jbm.b.35153] [Reference Citation Analysis]
5 Moya-lopez C, González-fuentes J, Bravo I, Chapron D, Bourson P, Alonso-moreno C, Hermida-merino D. Polylactide Perspectives in Biomedicine: From Novel Synthesis to the Application Performance. Pharmaceutics 2022;14:1673. [DOI: 10.3390/pharmaceutics14081673] [Reference Citation Analysis]
6 Domínguez-robles J, Utomo E, Cornelius VA, Anjani QK, Korelidou A, Gonzalez Z, Donnelly RF, Margariti A, Delgado-aguilar M, Tarrés Q, Larrañeta E. TPU-based antiplatelet cardiovascular prostheses prepared using fused deposition modelling. Materials & Design 2022;220:110837. [DOI: 10.1016/j.matdes.2022.110837] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Korelidou A, Domínguez-Robles J, Magill ER, Eleftheriadou M, Cornelius VA, Donnelly RF, Margariti A, Larrañeta E. 3D-printed reservoir-type implants containing poly(lactic acid)/poly(caprolactone) porous membranes for sustained drug delivery. Biomater Adv 2022;139:213024. [PMID: 35908473 DOI: 10.1016/j.bioadv.2022.213024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Arif ZU, Khalid MY, Noroozi R, Sadeghianmaryan A, Jalalvand M, Hossain M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol 2022:S0141-8130(22)01572-0. [PMID: 35896130 DOI: 10.1016/j.ijbiomac.2022.07.140] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
9 Rahman-yildir J, Wiedey R, Breitkreutz J. Dissolution studies of 3D-printed inserts in a novel biopharmaceutical bladder model. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121984] [Reference Citation Analysis]
10 Kumar N, Alathur Ramakrishnan S, Lopez KG, Chin BZ, S D, Kumar L, Baskar S, Vellayappan BA, Fuh JYH, Anantharajan SK. Current trends and future scope in 3D printing for surgical management of spine pathologies. Bioprinting 2022;26:e00197. [DOI: 10.1016/j.bprint.2022.e00197] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Esfahani G, Häusler O, Mäder K. Controlled release starch-lipid implant for the therapy of severe malaria. Int J Pharm 2022;622:121879. [PMID: 35649475 DOI: 10.1016/j.ijpharm.2022.121879] [Reference Citation Analysis]
12 Hernandez JL, Woodrow KA. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue-Specific Implications for Biocompatibility. Adv Healthc Mater 2022;11:e2102087. [PMID: 35137550 DOI: 10.1002/adhm.202102087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
13 Picco CJ, Domínguez-Robles J, Utomo E, Paredes AJ, Volpe-Zanutto F, Malinova D, Donnelly RF, Larrañeta E. 3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs. Drug Deliv 2022;29:1038-48. [PMID: 35363100 DOI: 10.1080/10717544.2022.2057620] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
14 Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The Role of 3D Printing Technology in Microengineering of Microneedles. Small 2022;:e2106392. [PMID: 35362226 DOI: 10.1002/smll.202106392] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Pavan Kalyan BG, Kumar L. 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery. AAPS PharmSciTech 2022;23:92. [PMID: 35301602 DOI: 10.1208/s12249-022-02242-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Manini G, Benali S, Raquez JM, Goole J. Proof of concept of a predictive model of drug release from long-acting implants obtained by fused-deposition modeling. Int J Pharm 2022;618:121663. [PMID: 35292398 DOI: 10.1016/j.ijpharm.2022.121663] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Anjani QK, Utomo E, Domínguez-Robles J, Detamornrat U, Donnelly RF, Larrañeta E. A New and Sensitive HPLC-UV Method for Rapid and Simultaneous Quantification of Curcumin and D-Panthenol: Application to In Vitro Release Studies of Wound Dressings. Molecules 2022;27:1759. [PMID: 35335123 DOI: 10.3390/molecules27061759] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Anwar-Fadzil AFB, Yuan Y, Wang L, Kochhar JS, Kachouie NN, Kang L. Recent progress in three-dimensionally-printed dosage forms from a pharmacist perspective. J Pharm Pharmacol 2022:rgab168. [PMID: 35191505 DOI: 10.1093/jpp/rgab168] [Reference Citation Analysis]
19 Mardina Z, Venezuela J, Dargusch MS, Shi Z, Atrens A. The influence of the protein bovine serum albumin (BSA) on the corrosion of Mg, Zn, and Fe in Zahrina’s simulated interstitial fluid. Corrosion Science 2022. [DOI: 10.1016/j.corsci.2022.110160] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Aggarwal D, Kumar V, Sharma S. Drug-loaded biomaterials for orthopedic applications: A review. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.02.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
21 Utomo E, Stewart SA, Picco CJ, Domínguez-robles J, Larrañeta E. Classification, material types, and design approaches of long-acting and implantable drug delivery systems. Long-Acting Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-12-821749-8.00012-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Mathew E, Stewart SA, Utomo E, Larrañeta E, Lamprou DA. Implantable and long-lasting drug delivery systems for infectious, inflammatory, endocrine, and neurodegenerative diseases. Long-Acting Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-12-821749-8.00003-3] [Reference Citation Analysis]
23 Patra R, Ghosal K, Saha R, Sarkar P, Chattopadhyay S, Sarkar K. Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications with respect to their synthesis procedures, degradation properties, toxicity, stability and applications. Encyclopedia of Materials: Plastics and Polymers 2022. [DOI: 10.1016/b978-0-12-820352-1.00252-2] [Reference Citation Analysis]
24 Larrañeta E, Raghu Raj Singh T, Donnelly RF. Overview of the clinical current needs and potential applications for long-acting and implantable delivery systems. Long-Acting Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-12-821749-8.00005-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Monavari M, Homaeigohar S, Fuentes-Chandía M, Nawaz Q, Monavari M, Venkatraman A, Boccaccini AR. 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO2-CaO nanoparticles for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2021;131:112470. [PMID: 34857258 DOI: 10.1016/j.msec.2021.112470] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
26 Permana AD, Stewart SA, Domínguez-Robles J, Amir MN, Bahar MA, Donnelly RF, Larraneta E. Development and validation of a high-performance liquid chromatography method for levothyroxine sodium quantification in plasma for pre-clinical evaluation of long-acting drug delivery systems. Anal Methods 2021;13:5204-10. [PMID: 34676387 DOI: 10.1039/d1ay01049b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Won C, Kwon C, Park K, Seo J, Lee T. Electronic Drugs: Spatial and Temporal Medical Treatment of Human Diseases. Adv Mater 2021;33:e2005930. [PMID: 33938022 DOI: 10.1002/adma.202005930] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
28 Ragelle H, Rahimian S, Guzzi EA, Westenskow PD, Tibbitt MW, Schwach G, Langer R. Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Adv Drug Deliv Rev 2021;178:113990. [PMID: 34600963 DOI: 10.1016/j.addr.2021.113990] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
29 Spoerk M, Arbeiter F, Koutsamanis I, Cajner H, Katschnig M, Eder S. Personalised urethra pessaries prepared by material extrusion-based additive manufacturing. Int J Pharm 2021;608:121112. [PMID: 34547391 DOI: 10.1016/j.ijpharm.2021.121112] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Pinho LAG, Gratieri T, Gelfuso GM, Marreto RN, Cunha-Filho M. Three-dimensional printed personalized drug devices with anatomical fit: a review. J Pharm Pharmacol 2021:rgab146. [PMID: 34665263 DOI: 10.1093/jpp/rgab146] [Reference Citation Analysis]
31 Abdelkader H, Fathalla Z, Seyfoddin A, Farahani M, Thrimawithana T, Allahham A, Alani AWG, Al-Kinani AA, Alany RG. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv Drug Deliv Rev 2021;177:113957. [PMID: 34481032 DOI: 10.1016/j.addr.2021.113957] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
32 Domínguez-Robles J, Shen T, Cornelius VA, Corduas F, Mancuso E, Donnelly RF, Margariti A, Lamprou DA, Larrañeta E. Development of drug loaded cardiovascular prosthesis for thrombosis prevention using 3D printing. Mater Sci Eng C Mater Biol Appl 2021;129:112375. [PMID: 34579894 DOI: 10.1016/j.msec.2021.112375] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
33 Debnath SK, Debnath M, Srivastava R, Omri A. Intervention of 3D printing in health care: transformation for sustainable development. Expert Opin Drug Deliv 2021;18:1659-72. [PMID: 34520310 DOI: 10.1080/17425247.2021.1981287] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Domínguez-Robles J, Diaz-Gomez L, Utomo E, Shen T, Picco CJ, Alvarez-Lorenzo C, Concheiro A, Donnelly RF, Larrañeta E. Use of 3D Printing for the Development of Biodegradable Antiplatelet Materials for Cardiovascular Applications. Pharmaceuticals (Basel) 2021;14:921. [PMID: 34577621 DOI: 10.3390/ph14090921] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
35 Stewart SA, Domínguez-Robles J, Utomo E, Picco CJ, Corduas F, Mancuso E, Amir MN, Bahar MA, Sumarheni S, Donnelly RF, Permana AD, Larrañeta E. Poly(caprolactone)-based subcutaneous implant for sustained delivery of levothyroxine. Int J Pharm 2021;607:121011. [PMID: 34391850 DOI: 10.1016/j.ijpharm.2021.121011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
36 Antich-Isern P, Caro-Barri J, Aparicio-Blanco J. The combination of medical devices and medicinal products revisited from the new European legal framework. Int J Pharm 2021;607:120992. [PMID: 34390808 DOI: 10.1016/j.ijpharm.2021.120992] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
37 Peng K, Vora LK, Domínguez-robles J, Naser YA, Li M, Larrañeta E, Donnelly RF. Hydrogel-forming microneedles for rapid and efficient skin deposition of controlled release tip-implants. Materials Science and Engineering: C 2021;127:112226. [DOI: 10.1016/j.msec.2021.112226] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
38 Elbadawi M, McCoubrey LE, Gavins FKH, Ong JJ, Goyanes A, Gaisford S, Basit AW. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev 2021;175:113805. [PMID: 34019957 DOI: 10.1016/j.addr.2021.05.015] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 40.0] [Reference Citation Analysis]
39 Muñiz Castro B, Elbadawi M, Ong JJ, Pollard T, Song Z, Gaisford S, Pérez G, Basit AW, Cabalar P, Goyanes A. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release 2021;337:530-45. [PMID: 34339755 DOI: 10.1016/j.jconrel.2021.07.046] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 31.0] [Reference Citation Analysis]
40 Domsta V, Seidlitz A. 3D-Printing of Drug-Eluting Implants: An Overview of the Current Developments Described in the Literature. Molecules 2021;26:4066. [PMID: 34279405 DOI: 10.3390/molecules26134066] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
41 Wang J, Zhang Y, Aghda NH, Pillai AR, Thakkar R, Nokhodchi A, Maniruzzaman M. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv Drug Deliv Rev 2021;174:294-316. [PMID: 33895212 DOI: 10.1016/j.addr.2021.04.019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 22.0] [Reference Citation Analysis]
42 Jain T, Jain JK, Saxena KK. Design and Comprehensive Study of Biodegradable Zinc–based Implants for Bio–medical Applications. Advances in Materials and Processing Technologies. [DOI: 10.1080/2374068x.2021.1939555] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021;35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Stewart SA, Waite D, Domínguez-Robles J, McAlister E, Permana AD, Donnelly RF, Larrañeta E. HPLC method for levothyroxine quantification in long-acting drug delivery systems. Validation and evaluation of bovine serum albumin as levothyroxine stabilizer. J Pharm Biomed Anal 2021;203:114182. [PMID: 34089980 DOI: 10.1016/j.jpba.2021.114182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
45 Koutsamanis I, Paudel A, Alva Zúñiga CP, Wiltschko L, Spoerk M. Novel polyester-based thermoplastic elastomers for 3D-printed long-acting drug delivery applications. J Control Release 2021;335:290-305. [PMID: 34044092 DOI: 10.1016/j.jconrel.2021.05.030] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
46 Ahmad Wsoo M, Izwan Abd Razak S, Shahir S, Ahmed Abdullah Al‐moalemi H, Rafiq Abdul Kadir M, Hasraf Mat Nayan N. Development of prolonged drug delivery system using electrospun cellulose acetate/polycaprolactone nanofibers: Future subcutaneous implantation. Polym Adv Technol 2021;32:3664-78. [DOI: 10.1002/pat.5375] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
47 Lima AF, Pegorin GS, Miranda MCR, Cachaneski-Lopes JP, Silva WM, Borges FA, Guerra NB, Herculano RD, Batagin-Neto A. Ibuprofen-loaded biocompatible latex membrane for drug release: Characterization and molecular modeling. J Appl Biomater Funct Mater 2021;19:22808000211005383. [PMID: 33781110 DOI: 10.1177/22808000211005383] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Wsoo MA, Razak SIA, Bohari SPM, Shahir S, Salihu R, Kadir MRA, Nayan NHM. Vitamin D3-loaded electrospun cellulose acetate/polycaprolactone nanofibers: Characterization, in-vitro drug release and cytotoxicity studies. Int J Biol Macromol 2021;181:82-98. [PMID: 33771547 DOI: 10.1016/j.ijbiomac.2021.03.108] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
49 Carlier E, Marquette S, Peerboom C, Amighi K, Goole J. Development of mAb-loaded 3D-printed (FDM) implantable devices based on PLGA. Int J Pharm 2021;597:120337. [PMID: 33549812 DOI: 10.1016/j.ijpharm.2021.120337] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
50 Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J, Vora LK, Anjani QK, Donnelly RF. Hollow microneedles: A perspective in biomedical applications. Int J Pharm 2021;599:120455. [PMID: 33676993 DOI: 10.1016/j.ijpharm.2021.120455] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 40.0] [Reference Citation Analysis]
51 Liaskoni A, Wildman RD, Roberts CJ. 3D printed polymeric drug-eluting implants. Int J Pharm 2021;597:120330. [PMID: 33540014 DOI: 10.1016/j.ijpharm.2021.120330] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
52 Shi K, Salvage JP, Maniruzzaman M, Nokhodchi A. Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tablets. Int J Pharm 2021;597:120315. [PMID: 33540000 DOI: 10.1016/j.ijpharm.2021.120315] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 26.0] [Reference Citation Analysis]
53 Economidou SN, Uddin MJ, Marques MJ, Douroumis D, Sow WT, Li H, Reid A, Windmill JF, Podoleanu A. A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Additive Manufacturing 2021;38:101815. [DOI: 10.1016/j.addma.2020.101815] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 20.0] [Reference Citation Analysis]
54 Martin NK, Domínguez-Robles J, Stewart SA, Cornelius VA, Anjani QK, Utomo E, García-Romero I, Donnelly RF, Margariti A, Lamprou DA, Larrañeta E. Fused deposition modelling for the development of drug loaded cardiovascular prosthesis. Int J Pharm 2021;595:120243. [PMID: 33484923 DOI: 10.1016/j.ijpharm.2021.120243] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 27.0] [Reference Citation Analysis]
55 Jankowska AM, Łabowska MB, Michalak I, Szymczyk-ziółkowska P, Kulbacka J, Detyna J. Potential Advanced Drug Delivery Systems Based on Hydrogels in 3D Printing Technology for Cancer Treatment. Materials Forming, Machining and Tribology 2021. [DOI: 10.1007/978-3-030-68024-4_17] [Reference Citation Analysis]
56 Maturavongsadit P, Paravyan G, Kovarova M, Garcia JV, Benhabbour SR. A new engineering process of biodegradable polymeric solid implants for ultra-long-acting drug delivery. Int J Pharm X 2021;3:100068. [PMID: 33392498 DOI: 10.1016/j.ijpx.2020.100068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
57 Dharmayanti C, Gillam TA, Williams DB, Blencowe A. Drug-Eluting Biodegradable Implants for the Sustained Release of Bisphosphonates. Polymers (Basel) 2020;12:E2930. [PMID: 33297466 DOI: 10.3390/polym12122930] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
58 Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Three-dimensional (3D)-printed devices composed of hydrophilic cap and hydrophobic body for improving buoyancy and gastric retention of domperidone tablets. European Journal of Pharmaceutical Sciences 2020;155:105555. [DOI: 10.1016/j.ejps.2020.105555] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
59 Durga Prasad Reddy R, Sharma V. Additive manufacturing in drug delivery applications: A review. International Journal of Pharmaceutics 2020;589:119820. [DOI: 10.1016/j.ijpharm.2020.119820] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 19.5] [Reference Citation Analysis]
60 Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. A Graphical Review on the Escalation of Fused Deposition Modeling (FDM) 3D Printing in the Pharmaceutical Field. Journal of Pharmaceutical Sciences 2020;109:2943-57. [DOI: 10.1016/j.xphs.2020.07.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 18.5] [Reference Citation Analysis]
61 Wadher K, Trivedi R, Wankhede N, Kale M, Umekar M. 3D printing in pharmaceuticals: An emerging technology full of challenges. Ann Pharm Fr 2021;79:107-18. [PMID: 32853575 DOI: 10.1016/j.pharma.2020.08.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
62 Chauhan VM, Zhang H, Dalby PA, Aylott JW. Advancements in the co-formulation of biologic therapeutics. J Control Release 2020;327:397-405. [PMID: 32798639 DOI: 10.1016/j.jconrel.2020.08.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
63 Wallis M, Al-dulimi Z, Tan DK, Maniruzzaman M, Nokhodchi A. 3D printing for enhanced drug delivery: current state-of-the-art and challenges. Drug Development and Industrial Pharmacy 2020;46:1385-401. [DOI: 10.1080/03639045.2020.1801714] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
64 Stewart SA, Domínguez-Robles J, McIlorum VJ, Gonzalez Z, Utomo E, Mancuso E, Lamprou DA, Donnelly RF, Larrañeta E. Poly(caprolactone)-Based Coatings on 3D-Printed Biodegradable Implants: A Novel Strategy to Prolong Delivery of Hydrophilic Drugs. Mol Pharm 2020;17:3487-500. [PMID: 32672976 DOI: 10.1021/acs.molpharmaceut.0c00515] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 17.0] [Reference Citation Analysis]
65 Shi K, Aviles-espinosa R, Rendon-morales E, Woodbine L, Maniruzzaman M, Nokhodchi A. Novel 3D printed device with integrated macroscale magnetic field triggerable anti-cancer drug delivery system. Colloids and Surfaces B: Biointerfaces 2020;192:111068. [DOI: 10.1016/j.colsurfb.2020.111068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
66 Algahtani MS, Mohammed AA, Ahmad J, Saleh E. Development of a 3D Printed Coating Shell to Control the Drug Release of Encapsulated Immediate-Release Tablets. Polymers (Basel) 2020;12:E1395. [PMID: 32580349 DOI: 10.3390/polym12061395] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
67 Farmer ZL, Domínguez-Robles J, Mancinelli C, Larrañeta E, Lamprou DA. Urogynecological surgical mesh implants: New trends in materials, manufacturing and therapeutic approaches. Int J Pharm 2020;585:119512. [PMID: 32526332 DOI: 10.1016/j.ijpharm.2020.119512] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
68 Larrañeta E, Dominguez-robles J, Lamprou DA. Additive Manufacturing Can Assist in the Fight Against COVID-19 and Other Pandemics and Impact on the Global Supply Chain. 3D Printing and Additive Manufacturing 2020;7:100-3. [DOI: 10.1089/3dp.2020.0106] [Cited by in Crossref: 61] [Cited by in F6Publishing: 28] [Article Influence: 30.5] [Reference Citation Analysis]
69 Mathew E, Pitzanti G, Larrañeta E, Lamprou DA. 3D Printing of Pharmaceuticals and Drug Delivery Devices. Pharmaceutics 2020;12:E266. [PMID: 32183435 DOI: 10.3390/pharmaceutics12030266] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 30.5] [Reference Citation Analysis]