BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and Challenges in the Delivery of mRNA-based Vaccines. Pharmaceutics 2020;12:E102. [PMID: 32013049 DOI: 10.3390/pharmaceutics12020102] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 27.0] [Reference Citation Analysis]
Number Citing Articles
1 Buonaiuto G, Desideri F, Taliani V, Ballarino M. Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells 2021;10:2512. [PMID: 34685492 DOI: 10.3390/cells10102512] [Reference Citation Analysis]
2 Sun M, Dang UJ, Yuan Y, Psaras AM, Osipitan O, Brooks TA, Lu F, Di Pasqua AJ. Optimization of DOTAP/chol Cationic Lipid Nanoparticles for mRNA, pDNA, and Oligonucleotide Delivery. AAPS PharmSciTech 2022;23:135. [PMID: 35534697 DOI: 10.1208/s12249-022-02294-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Ibba ML, Ciccone G, Esposito CL, Catuogno S, Giangrande PH. Advances in mRNA non-viral delivery approaches. Adv Drug Deliv Rev 2021;177:113930. [PMID: 34403751 DOI: 10.1016/j.addr.2021.113930] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
4 Sasso JM, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022. [PMID: 35533054 DOI: 10.1021/acs.jmedchem.2c00024] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines (Basel) 2021;9:65. [PMID: 33478109 DOI: 10.3390/vaccines9010065] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 45.0] [Reference Citation Analysis]
6 Wu Y, Zhang H, Meng L, Li F, Yu C. Comparison of Immune Responses Elicited by SARS-CoV-2 mRNA and Recombinant Protein Vaccine Candidates. Front Immunol 2022;13:906457. [PMID: 35663946 DOI: 10.3389/fimmu.2022.906457] [Reference Citation Analysis]
7 Guevara ML, Persano F, Persano S. Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy. Front Chem 2020;8:589959. [PMID: 33195094 DOI: 10.3389/fchem.2020.589959] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
8 Baptista B, Carapito R, Laroui N, Pichon C, Sousa F. mRNA, a Revolution in Biomedicine. Pharmaceutics 2021;13:2090. [PMID: 34959371 DOI: 10.3390/pharmaceutics13122090] [Reference Citation Analysis]
9 Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021;179:113914. [PMID: 34363861 DOI: 10.1016/j.addr.2021.113914] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
10 Balmayor ER. Synthetic mRNA - emerging new class of drug for tissue regeneration. Curr Opin Biotechnol 2021;74:8-14. [PMID: 34749063 DOI: 10.1016/j.copbio.2021.10.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Morais P, Adachi H, Yu YT. The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines. Front Cell Dev Biol 2021;9:789427. [PMID: 34805188 DOI: 10.3389/fcell.2021.789427] [Reference Citation Analysis]
12 Wang AYL. Application of Modified mRNA in Somatic Reprogramming to Pluripotency and Directed Conversion of Cell Fate. Int J Mol Sci 2021;22:8148. [PMID: 34360910 DOI: 10.3390/ijms22158148] [Reference Citation Analysis]
13 Wilson B, Mukundan Geetha K. Nanomedicine to deliver biological macromolecules for treating COVID-19. Vaccine 2022;40:3931-41. [PMID: 35660038 DOI: 10.1016/j.vaccine.2022.05.068] [Reference Citation Analysis]
14 Qin F, Xia F, Chen H, Cui B, Feng Y, Zhang P, Chen J, Luo M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front Cell Dev Biol 2021;9:633776. [PMID: 34113610 DOI: 10.3389/fcell.2021.633776] [Reference Citation Analysis]
15 Mildner R, Hak S, Parot J, Hyldbakk A, Borgos SE, Some D, Johann C, Caputo F. Improved multidetector asymmetrical-flow field-flow fractionation method for particle sizing and concentration measurements of lipid-based nanocarriers for RNA delivery. Eur J Pharm Biopharm 2021;163:252-65. [PMID: 33745980 DOI: 10.1016/j.ejpb.2021.03.004] [Reference Citation Analysis]
16 Deka Dey A, Yousefiasl S, Kumar A, Dabbagh Moghaddam F, Rahimmanesh I, Samandari M, Jamwal S, Maleki A, Mohammadi A, Rabiee N, Cláudia Paiva‐santos A, Tamayol A, Sharifi E, Makvandi P. miRNA ‐encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10343] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Karpenko LI, Rudometov AP, Sharabrin SV, Shcherbakov DN, Borgoyakova MB, Bazhan SI, Volosnikova EA, Rudometova NB, Orlova LA, Pyshnaya IA, Zaitsev BN, Volkova NV, Azaev MS, Zaykovskaya AV, Pyankov OV, Ilyichev AA. Delivery of mRNA Vaccine against SARS-CoV-2 Using a Polyglucin:Spermidine Conjugate. Vaccines (Basel) 2021;9:76. [PMID: 33494530 DOI: 10.3390/vaccines9020076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Nakanishi H, Itaka K. Synthetic mRNA for ex vivo therapeutic applications. Drug Metabolism and Pharmacokinetics 2022. [DOI: 10.1016/j.dmpk.2022.100447] [Reference Citation Analysis]
19 Zhang H, Bussmann J, Huhnke FH, Devoldere J, Minnaert AK, Jiskoot W, Serwane F, Spatz J, Röding M, De Smedt SC, Braeckmans K, Remaut K. Together is Better: mRNA Co-Encapsulation in Lipoplexes is Required to Obtain Ratiometric Co-Delivery and Protein Expression on the Single Cell Level. Adv Sci (Weinh) 2022;9:e2102072. [PMID: 34913603 DOI: 10.1002/advs.202102072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Qin M, Du G, Sun X. Recent Advances in the Noninvasive Delivery of mRNA. Acc Chem Res 2021;54:4262-71. [PMID: 34756014 DOI: 10.1021/acs.accounts.1c00493] [Reference Citation Analysis]
21 Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BioTech 2022;11:6. [DOI: 10.3390/biotech11010006] [Reference Citation Analysis]
22 Wang C, Zhang Y, Dong Y. Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications. Acc Chem Res 2021;54:4283-93. [PMID: 34793124 DOI: 10.1021/acs.accounts.1c00550] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
23 Khurana A, Allawadhi P, Khurana I, Allwadhi S, Weiskirchen R, Banothu AK, Chhabra D, Joshi K, Bharani KK. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021;38:101142. [PMID: 33815564 DOI: 10.1016/j.nantod.2021.101142] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
24 Krhač Levačić A, Berger S, Müller J, Wegner A, Lächelt U, Dohmen C, Rudolph C, Wagner E. Dynamic mRNA polyplexes benefit from bioreducible cleavage sites for in vitro and in vivo transfer. J Control Release 2021;339:27-40. [PMID: 34547258 DOI: 10.1016/j.jconrel.2021.09.016] [Reference Citation Analysis]
25 Sagili Anthony DP, Sivakumar K, Venugopal P, Sriram DK, George M. Can mRNA Vaccines Turn the Tables During the COVID-19 Pandemic? Current Status and Challenges. Clin Drug Investig 2021;41:499-509. [PMID: 33754328 DOI: 10.1007/s40261-021-01022-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Mollocana-Lara EC, Ni M, Agathos SN, Gonzales-Zubiate FA. The infinite possibilities of RNA therapeutics. J Ind Microbiol Biotechnol 2021:kuab063. [PMID: 34463324 DOI: 10.1093/jimb/kuab063] [Reference Citation Analysis]
27 Legere RM, Cohen ND, Poveda C, Bray JM, Barhoumi R, Szule JA, de la Concha-Bermejillo A, Bordin AI, Pollet J. Safe and effective aerosolization of in vitro transcribed mRNA to the respiratory tract epithelium of horses without a transfection agent. Sci Rep 2021;11:371. [PMID: 33432084 DOI: 10.1038/s41598-020-79855-1] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 Cox A, Lim SA, Chung EJ. Strategies to deliver RNA by nanoparticles for therapeutic potential. Mol Aspects Med 2021;:100991. [PMID: 34366123 DOI: 10.1016/j.mam.2021.100991] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Uchida S, Perche F, Pichon C, Cabral H. Nanomedicine-Based Approaches for mRNA Delivery. Mol Pharm 2020;17:3654-84. [PMID: 32845639 DOI: 10.1021/acs.molpharmaceut.0c00618] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
30 Yoo YJ, Lee CH, Park SH, Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv Drug Deliv Rev 2020;154-155:37-63. [PMID: 32526452 DOI: 10.1016/j.addr.2020.06.002] [Cited by in Crossref: 96] [Cited by in F6Publishing: 76] [Article Influence: 48.0] [Reference Citation Analysis]
32 Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. Advanced Science. [DOI: 10.1002/advs.202201740] [Reference Citation Analysis]
33 van de Berg D, Kis Z, Behmer CF, Samnuan K, Blakney AK, Kontoravdi C, Shattock R, Shah N. Quality by design modelling to support rapid RNA vaccine production against emerging infectious diseases. NPJ Vaccines 2021;6:65. [PMID: 33927197 DOI: 10.1038/s41541-021-00322-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Moradian H, Lendlein A, Gossen M. Strategies for simultaneous and successive delivery of RNA. J Mol Med (Berl) 2020;98:1767-79. [PMID: 33146744 DOI: 10.1007/s00109-020-01956-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Feliciello I, Procino A. mRNA vaccines: Why and how they should be modified. J Biol Res 2021;94. [DOI: 10.4081/jbr.2021.10072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 D'haese S, Lacroix C, Garcia F, Plana M, Ruta S, Vanham G, Verrier B, Aerts JL. Off the beaten path: Novel mRNA-nanoformulations for therapeutic vaccination against HIV. J Control Release 2021;330:1016-33. [PMID: 33181204 DOI: 10.1016/j.jconrel.2020.11.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Huang L, Rong Y, Pan Q, Yi K, Tang X, Zhang Q, Wang W, Wu J, Wang F. SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian J Pharm Sci 2021;16:136-46. [PMID: 32905011 DOI: 10.1016/j.ajps.2020.08.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
38 Kim Y, Kim H, Kim EH, Jang H, Jang Y, Chi SG, Yang Y, Kim SH. The Potential of Cell-Penetrating Peptides for mRNA Delivery to Cancer Cells. Pharmaceutics 2022;14:1271. [PMID: 35745843 DOI: 10.3390/pharmaceutics14061271] [Reference Citation Analysis]
39 Goodsell DS, Burley SK. RCSB Protein Data Bank resources for structure-facilitated design of mRNA vaccines for existing and emerging viral pathogens. Structure 2021:S0969-2126(21)00376-2. [PMID: 34739839 DOI: 10.1016/j.str.2021.10.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Chong WC, Chellappan DK, Shukla SD, Peterson GM, Patel RP, Jha NK, Eri RD, Dua K, Tambuwala MM, Shastri MD. An Appraisal of the Current Scenario in Vaccine Research for COVID-19. Viruses 2021;13:1397. [PMID: 34372603 DOI: 10.3390/v13071397] [Reference Citation Analysis]
41 Gao Y, Yang K, Shelling AN, Wu Z. Nanotechnology-Enabled COVID-19 mRNA Vaccines. Encyclopedia 2021;1:773-80. [DOI: 10.3390/encyclopedia1030059] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Du L, Yang Y, Zhang X, Li F. Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies. Nanoscale 2022. [PMID: 35018939 DOI: 10.1039/d1nr03831a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
43 Griffiths PD. Vaccines for SARS coronavirus 2 and the new normal in vaccinology. Rev Med Virol 2021;31:e2229. [PMID: 33666285 DOI: 10.1002/rmv.2229] [Reference Citation Analysis]
44 Wei J, Hui A. The Paradigm Shift in Treatment from Covid-19 to Oncology with mRNA Vaccines. Cancer Treatment Reviews 2022. [DOI: 10.1016/j.ctrv.2022.102405] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022;7:94. [PMID: 35322018 DOI: 10.1038/s41392-022-00950-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
46 Meng C, Chen Z, Li G, Welte T, Shen H. Nanoplatforms for mRNA Therapeutics. Adv Therap 2021;4:2000099. [DOI: 10.1002/adtp.202000099] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
47 Ojha R, Prajapati VK. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J Cell Physiol 2021. [PMID: 34170014 DOI: 10.1002/jcp.30483] [Reference Citation Analysis]
48 Nitika, Wei J, Hui AM. The Development of mRNA Vaccines for Infectious Diseases: Recent Updates. Infect Drug Resist 2021;14:5271-85. [PMID: 34916811 DOI: 10.2147/IDR.S341694] [Reference Citation Analysis]
49 Kavanagh EW, Green JJ. Toward Gene Transfer Nanoparticles as Therapeutics. Adv Healthc Mater 2022;11:e2102145. [PMID: 35006646 DOI: 10.1002/adhm.202102145] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
50 Dykstra PB, Kaplan M, Smolke CD. Engineering synthetic RNA devices for cell control. Nat Rev Genet 2022. [PMID: 34983970 DOI: 10.1038/s41576-021-00436-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
51 Rouf NZ, Biswas S, Tarannum N, Oishee LM, Muna MM. Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. RNA Biol 2022;19:386-410. [PMID: 35354425 DOI: 10.1080/15476286.2022.2055923] [Reference Citation Analysis]
52 Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. From COVID-19 to Cancer mRNA Vaccines: Moving From Bench to Clinic in the Vaccine Landscape. Front Immunol 2021;12:679344. [PMID: 34305909 DOI: 10.3389/fimmu.2021.679344] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
53 Kim D, Le QV, Wu Y, Park J, Oh YK. Nanovesicle-Mediated Delivery Systems for CRISPR/Cas Genome Editing. Pharmaceutics 2020;12:E1233. [PMID: 33353099 DOI: 10.3390/pharmaceutics12121233] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
54 Rahman MM, Zhou N, Huang J. An Overview on the Development of mRNA-Based Vaccines and Their Formulation Strategies for Improved Antigen Expression In Vivo. Vaccines (Basel) 2021;9:244. [PMID: 33799516 DOI: 10.3390/vaccines9030244] [Reference Citation Analysis]
55 Gómez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE, Otáñez G, Pomaquero C, Villarroel S, Zurita A, Calvache C, Celi K, Contreras T, Corrales D, Naciph MB, Peña J, Caicedo A. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 2021;7:35. [PMID: 34556658 DOI: 10.1038/s41526-021-00162-8] [Reference Citation Analysis]
56 Chavda VP, Hossain MK, Beladiya J, Apostolopoulos V. Nucleic Acid Vaccines for COVID-19: A Paradigm Shift in the Vaccine Development Arena. Biologics 2021;1:337-56. [DOI: 10.3390/biologics1030020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Esteban I, Pastor-Quiñones C, Usero L, Plana M, García F, Leal L. In the Era of mRNA Vaccines, Is There Any Hope for HIV Functional Cure? Viruses 2021;13:501. [PMID: 33803790 DOI: 10.3390/v13030501] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Ouranidis A, Vavilis T, Mandala E, Davidopoulou C, Stamoula E, Markopoulou CK, Karagianni A, Kachrimanis K. mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines 2022;10:50. [DOI: 10.3390/biomedicines10010050] [Reference Citation Analysis]
59 Khandker SS, Godman B, Jawad MI, Meghla BA, Tisha TA, Khondoker MU, Haq MA, Charan J, Talukder AA, Azmuda N, Sharmin S, Jamiruddin MR, Haque M, Adnan N. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines (Basel) 2021;9:1387. [PMID: 34960133 DOI: 10.3390/vaccines9121387] [Reference Citation Analysis]
60 Adesokan A, Obeid MA, Lawal AF. SARS-CoV-2: vaccinology and emerging therapeutics; challenges and future developments. Ther Deliv 2022. [PMID: 35195017 DOI: 10.4155/tde-2021-0075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Ferraresso F, Strilchuk AW, Juang LJ, Poole LG, Luyendyk JP, Kastrup CJ. Comparison of DLin-MC3-DMA and ALC-0315 for siRNA Delivery to Hepatocytes and Hepatic Stellate Cells. Mol Pharm 2022. [PMID: 35642083 DOI: 10.1021/acs.molpharmaceut.2c00033] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Elkhalifa D, Rayan M, Negmeldin AT, Elhissi A, Khalil A. Chemically modified mRNA beyond COVID-19: Potential preventive and therapeutic applications for targeting chronic diseases. Biomed Pharmacother 2022;145:112385. [PMID: 34915673 DOI: 10.1016/j.biopha.2021.112385] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Khoshnood S, Arshadi M, Akrami S, Koupaei M, Ghahramanpour H, Shariati A, Sadeghifard N, Heidary M. An overview on inactivated and live-attenuated SARS-CoV-2 vaccines. J Clin Lab Anal 2022;:e24418. [PMID: 35421266 DOI: 10.1002/jcla.24418] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
64 Karmacharya P, Patil BR, Kim JO. Recent advancements in lipid–mRNA nanoparticles as a treatment option for cancer immunotherapy. J Pharm Investig . [DOI: 10.1007/s40005-022-00569-9] [Reference Citation Analysis]
65 Raoufi E, Bahramimeimandi B, Salehi-Shadkami M, Chaosri P, Mozafari MR. Methodical Design of Viral Vaccines Based on Avant-Garde Nanocarriers: A Multi-Domain Narrative Review. Biomedicines 2021;9:520. [PMID: 34066608 DOI: 10.3390/biomedicines9050520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Feng R, Chang ACY, Ni R, Li JCY, Chau Y. mRNA Delivery and Storage by Co-Assembling Nanostructures with Designer Oligopeptides. ACS Appl Bio Mater 2022. [PMID: 35729172 DOI: 10.1021/acsabm.2c00397] [Reference Citation Analysis]
67 Bidram M, Zhao Y, Shebardina NG, Baldin AV, Bazhin AV, Ganjalikhany MR, Zamyatnin AA Jr, Ganjalikhani-Hakemi M. mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines (Basel) 2021;9:1060. [PMID: 34696168 DOI: 10.3390/vaccines9101060] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
68 Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021;170:113-41. [PMID: 33422546 DOI: 10.1016/j.addr.2021.01.003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 34.0] [Reference Citation Analysis]
69 Mansoor I, Eassa HA, Mohammed KHA, Abd El-Fattah MA, Abdo MH, Rashad E, Eassa HA, Saleh A, Amin OM, Nounou MI, Ghoneim O. Microneedle-Based Vaccine Delivery: Review of an Emerging Technology. AAPS PharmSciTech 2022;23:103. [PMID: 35381906 DOI: 10.1208/s12249-022-02250-8] [Reference Citation Analysis]
70 Alfagih IM, Aldosari B, AlQuadeib B, Almurshedi A, Alfagih MM. Nanoparticles as Adjuvants and Nanodelivery Systems for mRNA-Based Vaccines. Pharmaceutics 2020;13:45. [PMID: 33396817 DOI: 10.3390/pharmaceutics13010045] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
71 Sebastiani F, Yanez Arteta M, Lerche M, Porcar L, Lang C, Bragg RA, Elmore CS, Krishnamurthy VR, Russell RA, Darwish T, Pichler H, Waldie S, Moulin M, Haertlein M, Forsyth VT, Lindfors L, Cárdenas M. Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles. ACS Nano 2021;15:6709-22. [PMID: 33754708 DOI: 10.1021/acsnano.0c10064] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 33.0] [Reference Citation Analysis]
72 Bornewasser L, Domnick C, Kath-Schorr S. Stronger together for in-cell translation: natural and unnatural base modified mRNA. Chem Sci 2022;13:4753-61. [PMID: 35655897 DOI: 10.1039/d2sc00670g] [Reference Citation Analysis]
73 Ura T, Yamashita A, Mizuki N, Okuda K, Shimada M. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine 2021;39:197-201. [PMID: 33279318 DOI: 10.1016/j.vaccine.2020.11.054] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
74 Andresen JL, Fenton OS. Nucleic acid delivery and nanoparticle design for COVID vaccines. MRS Bull 2021;:1-8. [PMID: 34539057 DOI: 10.1557/s43577-021-00169-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Liu CH, Huang HY, Tu YF, Lai WY, Wang CL, Sun JR, Chien Y, Lin TW, Lin YY, Chien CS, Huang CH, Chen YM, Huang PI, Wang FD, Yang YP. Highlight of severe acute respiratory syndrome coronavirus-2 vaccine development against COVID-19 pandemic. J Chin Med Assoc 2021;84:9-13. [PMID: 33186212 DOI: 10.1097/JCMA.0000000000000461] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Shahzamani K, Mahmoudian F, Ahangarzadeh S, Ranjbar MM, Beikmohammadi L, Bahrami S, Mohammadi E, Esfandyari S, Alibakhshi A, Javanmard SH. Vaccine design and delivery approaches for COVID-19. Int Immunopharmacol 2021;100:108086. [PMID: 34454291 DOI: 10.1016/j.intimp.2021.108086] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Starostina EV, Sharabrin SV, Antropov DN, Stepanov GA, Shevelev GY, Lemza AE, Rudometov AP, Borgoyakova MB, Rudometova NB, Marchenko VY, Danilchenko NV, Chikaev AN, Bazhan SI, Ilyichev AA, Karpenko LI. Construction and Immunogenicity of Modified mRNA-Vaccine Variants Encoding Influenza Virus Antigens. Vaccines (Basel) 2021;9:452. [PMID: 34063689 DOI: 10.3390/vaccines9050452] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Cappellano G, Abreu H, Casale C, Dianzani U, Chiocchetti A. Nano-Microparticle Platforms in Developing Next-Generation Vaccines. Vaccines (Basel) 2021;9:606. [PMID: 34198865 DOI: 10.3390/vaccines9060606] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Shi J, Huang MW, Lu ZD, Du XJ, Shen S, Xu CF, Wang J. Delivery of mRNA for regulating functions of immune cells. J Control Release 2022:S0168-3659(22)00159-6. [PMID: 35337940 DOI: 10.1016/j.jconrel.2022.03.033] [Reference Citation Analysis]
80 Oladipo EK, Ajayi AF, Onile OS, Ariyo OE, Jimah EM, Ezediuno LO, Adebayo OI, Adebayo ET, Odeyemi AN, Oyeleke MO, Oyewole MP, Oguntomi AS, Akindiya OE, Aremu VO, Aboderin DO, Oloke JK. Designing a conserved peptide-based subunit vaccine against SARS-CoV-2 using immunoinformatics approach. In Silico Pharmacol 2021;9:8. [PMID: 33425647 DOI: 10.1007/s40203-020-00062-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
81 Aldossary AM, Ekweremadu CS, Offe IM, Alfassam HA, Han S, Onyali VC, Ozoude CH, Ayeni EA, Nwagwu CS, Halwani AA, Almozain NH, Tawfik EA. A Guide to Oral Vaccination: Highlighting Electrospraying as a Promising Manufacturing Technique toward a Successful Oral Vaccine Development. Saudi Pharmaceutical Journal 2022. [DOI: 10.1016/j.jsps.2022.03.010] [Reference Citation Analysis]
82 Jafari A, Danesh Pouya F, Niknam Z, Abdollahpour-Alitappeh M, Rezaei-Tavirani M, Rasmi Y. Current advances and challenges in COVID-19 vaccine development: from conventional vaccines to next-generation vaccine platforms. Mol Biol Rep 2022. [PMID: 35235159 DOI: 10.1007/s11033-022-07132-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Zhang C, Ma Y, Zhang J, Kuo JC, Zhang Z, Xie H, Zhu J, Liu T. Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy. Molecules 2022;27:1943. [DOI: 10.3390/molecules27061943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022;7:166. [PMID: 35597779 DOI: 10.1038/s41392-022-01007-w] [Reference Citation Analysis]
85 Aldosari BN, Alfagih IM, Almurshedi AS. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021;13:206. [PMID: 33540942 DOI: 10.3390/pharmaceutics13020206] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
86 Ye T, Zhong Z, García‐sastre A, Schotsaert M, De Geest BG. Current Status of COVID‐19 (Pre)Clinical Vaccine Development. Angew Chem 2020;132:19045-57. [DOI: 10.1002/ange.202008319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Garduño-gonzález KA, Peña-benavides SA, Araújo RG, Castillo-zacarías C, Melchor-martínez EM, Oyervides-muñoz MA, Sosa-hernández JE, Purton S, Iqbal HM, Parra-saldívar R. Current challenges for modern vaccines and perspectives for novel treatment alternatives. Journal of Drug Delivery Science and Technology 2022;70:103222. [DOI: 10.1016/j.jddst.2022.103222] [Reference Citation Analysis]
88 Chabanovska O, Galow AM, David R, Lemcke H. mRNA - A game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Adv Drug Deliv Rev 2021;179:114002. [PMID: 34653534 DOI: 10.1016/j.addr.2021.114002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
89 Abdelzaher HM, Gabr AS, Saleh BM, Abdel Gawad RM, Nour AA, Abdelanser A. RNA Vaccines against Infectious Diseases: Vital Progress with Room for Improvement. Vaccines (Basel) 2021;9:1211. [PMID: 34835142 DOI: 10.3390/vaccines9111211] [Reference Citation Analysis]
90 Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, Al-Wassiti H, Davis TP, Pouton CW, Kent SJ, Truong NP. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater 2021;131:16-40. [PMID: 34153512 DOI: 10.1016/j.actbio.2021.06.023] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 30.0] [Reference Citation Analysis]
91 Bell MR, Kutzler MA. An old problem with new solutions: Strategies to improve vaccine efficacy in the elderly. Adv Drug Deliv Rev 2022;183:114175. [PMID: 35202770 DOI: 10.1016/j.addr.2022.114175] [Reference Citation Analysis]
92 Kudsiova L, Lansley A, Scutt G, Allen M, Bowler L, Williams S, Lippett S, Stafford S, Tarzi M, Cross M, Okorie M. Stability testing of the Pfizer-BioNTech BNT162b2 COVID-19 vaccine: a translational study in UK vaccination centres. BMJ Open Sci 2021;5:e100203. [PMID: 35047705 DOI: 10.1136/bmjos-2021-100203] [Reference Citation Analysis]
93 Domazet-lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes 2022;13:719. [DOI: 10.3390/genes13050719] [Reference Citation Analysis]
94 Khan NT, Zinnia MA, Islam ABMMK. Modeling mRNA-based vaccine YFV.E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach. J Biomol Struct Dyn 2022;:1-22. [PMID: 34994279 DOI: 10.1080/07391102.2021.2024253] [Reference Citation Analysis]
95 Zukancic D, Suys EJA, Pilkington EH, Algarni A, Al-Wassiti H, Truong NP. The Importance of Poly(ethylene glycol) and Lipid Structure in Targeted Gene Delivery to Lymph Nodes by Lipid Nanoparticles. Pharmaceutics 2020;12:E1068. [PMID: 33182382 DOI: 10.3390/pharmaceutics12111068] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
96 Brown RB. Outcome Reporting Bias in COVID-19 mRNA Vaccine Clinical Trials. Medicina (Kaunas) 2021;57:199. [PMID: 33652582 DOI: 10.3390/medicina57030199] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
97 Ayad C, Yavuz A, Salvi JP, Libeau P, Exposito JY, Ginet V, Monge C, Verrier B, Arruda DC. Comparison of Physicochemical Properties of LipoParticles as mRNA Carrier Prepared by Automated Microfluidic System and Bulk Method. Pharmaceutics 2022;14:1297. [PMID: 35745869 DOI: 10.3390/pharmaceutics14061297] [Reference Citation Analysis]
98 Walsh APG, Gordon HN, Peter K, Wang X. Ultrasonic particles: An approach for targeted gene delivery. Adv Drug Deliv Rev 2021;179:113998. [PMID: 34662671 DOI: 10.1016/j.addr.2021.113998] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
99 Chen P, Shi X, He W, Zhong G, Tang Y, Wang H, Zhang P. mRNA vaccine-a desirable therapeutic strategy for surmounting COVID-19 pandemic. Hum Vaccin Immunother 2022;18:2040330. [PMID: 35321627 DOI: 10.1080/21645515.2022.2040330] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Ye T, Zhong Z, García-Sastre A, Schotsaert M, De Geest BG. Current Status of COVID-19 (Pre)Clinical Vaccine Development. Angew Chem Int Ed Engl 2020;59:18885-97. [PMID: 32663348 DOI: 10.1002/anie.202008319] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
101 Patel P, Ibrahim NM, Cheng K. The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA. Trends Pharmacol Sci 2021;42:448-60. [PMID: 33875229 DOI: 10.1016/j.tips.2021.03.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
102 Xu S, Yang K, Li R, Zhang L. mRNA Vaccine Era-Mechanisms, Drug Platform and Clinical Prospection. Int J Mol Sci 2020;21:E6582. [PMID: 32916818 DOI: 10.3390/ijms21186582] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 13.0] [Reference Citation Analysis]
103 Al Jurdi A, Gassen RB, Borges TJ, Solhjou Z, Hullekes FE, Lape IT, Efe O, Alghamdi A, Patel P, Choi JY, Mohammed MT, Bohan B, Pattanayak V, Rosales I, Cravedi P, Kotton CN, Azzi JR, Riella LV. Non-Invasive Monitoring for Rejection in Kidney Transplant Recipients After SARS-CoV-2 mRNA Vaccination. Front Immunol 2022;13:838985. [PMID: 35281011 DOI: 10.3389/fimmu.2022.838985] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
104 Wu Y, Song H. A Comparative and Comprehensive Review of Antibody Applications in the Treatment of Lung Disease. Life 2022;12:130. [DOI: 10.3390/life12010130] [Reference Citation Analysis]
105 Lim SA, Cox A, Tung M, Chung EJ. Clinical progress of nanomedicine-based RNA therapies. Bioactive Materials 2022;12:203-13. [DOI: 10.1016/j.bioactmat.2021.10.018] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
106 Lopez-Cantu DO, Wang X, Carrasco-Magallanes H, Afewerki S, Zhang X, Bonventre JV, Ruiz-Esparza GU. From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. Nanomicro Lett 2022;14:41. [PMID: 34981278 DOI: 10.1007/s40820-021-00771-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
107 Meldgaard TS, Blengio F, Maffione D, Sammicheli C, Tavarini S, Nuti S, Kratzer R, Medini D, Siena E, Bertholet S. Single-Cell Analysis of Antigen-Specific CD8+ T-Cell Transcripts Reveals Profiles Specific to mRNA or Adjuvanted Protein Vaccines. Front Immunol 2021;12:757151. [PMID: 34777370 DOI: 10.3389/fimmu.2021.757151] [Reference Citation Analysis]
108 Niculescu AG, Bîrcă AC, Grumezescu AM. New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics 2021;13:2053. [PMID: 34959335 DOI: 10.3390/pharmaceutics13122053] [Reference Citation Analysis]
109 Park JW, Lagniton PNP, Liu Y, Xu RH. mRNA vaccines for COVID-19: what, why and how. Int J Biol Sci 2021;17:1446-60. [PMID: 33907508 DOI: 10.7150/ijbs.59233] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
110 B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021;118:2845-69. [PMID: 33913510 DOI: 10.1002/bit.27803] [Reference Citation Analysis]
111 Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: preparation and applications. J Transl Med 2022;20. [DOI: 10.1186/s12967-022-03325-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
112 Abbaspour M, Akbari V. Cancer vaccines as a targeted immunotherapy approach for breast cancer: an update of clinical evidence. Expert Rev Vaccines 2021. [PMID: 34932427 DOI: 10.1080/14760584.2022.2021884] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Uddin MN, Roni MA. Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines. Vaccines (Basel) 2021;9:1033. [PMID: 34579270 DOI: 10.3390/vaccines9091033] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
114 Gao M, Zhang Q, Feng XH, Liu J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater 2021;131:1-15. [PMID: 34133982 DOI: 10.1016/j.actbio.2021.06.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
115 Rijkers GT, Weterings N, Obregon-Henao A, Lepolder M, Dutt TS, van Overveld FJ, Henao-Tamayo M. Antigen Presentation of mRNA-Based and Virus-Vectored SARS-CoV-2 Vaccines. Vaccines (Basel) 2021;9:848. [PMID: 34451973 DOI: 10.3390/vaccines9080848] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
116 To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov 2021;:1-11. [PMID: 34058918 DOI: 10.1080/17460441.2021.1935859] [Reference Citation Analysis]
117 Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene Editing by Extracellular Vesicles. Int J Mol Sci 2020;21:E7362. [PMID: 33028045 DOI: 10.3390/ijms21197362] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
118 Ivanova E. Yeasts in nanotechnology-enabled oral vaccine and gene delivery. Bioengineered 2021;12:8325-35. [PMID: 34592900 DOI: 10.1080/21655979.2021.1985816] [Reference Citation Analysis]