BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Makowski M, Silva ÍC, Pais do Amaral C, Gonçalves S, Santos NC. Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics 2019;11:E588. [PMID: 31717337 DOI: 10.3390/pharmaceutics11110588] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 14.7] [Reference Citation Analysis]
Number Citing Articles
1 Maximiano MR, Rios TB, Campos ML, Prado GS, Dias SC, Franco OL. Nanoparticles in association with antimicrobial peptides (NanoAMPs) as a promising combination for agriculture development. Front Mol Biosci 2022;9:890654. [DOI: 10.3389/fmolb.2022.890654] [Reference Citation Analysis]
2 van Gent ME, van der Reijden TJK, Lennard PR, de Visser AW, Schonkeren-ravensbergen B, Dolezal N, Cordfunke RA, Drijfhout JW, Nibbering PH. Synergism between the Synthetic Antibacterial and Antibiofilm Peptide (SAAP)-148 and Halicin. Antibiotics 2022;11:673. [DOI: 10.3390/antibiotics11050673] [Reference Citation Analysis]
3 Zhang C, Yang M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics 2022;11:349. [DOI: 10.3390/antibiotics11030349] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
4 Baati T, Ben Brahim M, Salek A, Selmi M, Njim L, Umek P, Aouane A, Hammami M, Hosni K. Flumequine-loaded titanate nanotubes as antibacterial agents for aquaculture farms. RSC Adv 2022;12:5953-63. [PMID: 35424545 DOI: 10.1039/d1ra08533f] [Reference Citation Analysis]
5 Peng X, Han Q, Zhou X, Chen Y, Huang X, Guo X, Peng R, Wang H, Peng X, Cheng L. Effect of pH-sensitive nanoparticles on inhibiting oral biofilms. Drug Deliv 2022;29:561-73. [PMID: 35156501 DOI: 10.1080/10717544.2022.2037788] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
6 Kowalska M, Popiel D, Walter M, Bąchor R, Biernat M, Cebrat M, Kijewska M, Kuczer M, Modzel M, Kluczyk A. Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. Chemosensors 2022;10:31. [DOI: 10.3390/chemosensors10010031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
7 Zharkova MS, Golubeva OY, Orlov DS, Vladimirova EV, Dmitriev AV, Tossi A, Shamova OV. Silver Nanoparticles Functionalized With Antimicrobial Polypeptides: Benefits and Possible Pitfalls of a Novel Anti-infective Tool. Front Microbiol 2021;12:750556. [PMID: 34975782 DOI: 10.3389/fmicb.2021.750556] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev 2021;179:114008. [PMID: 34673132 DOI: 10.1016/j.addr.2021.114008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
9 Drayton M, Deisinger JP, Ludwig KC, Raheem N, Müller A, Schneider T, Straus SK. Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. Int J Mol Sci 2021;22:11172. [PMID: 34681833 DOI: 10.3390/ijms222011172] [Reference Citation Analysis]
10 Rodríguez AA, Otero-González A, Ghattas M, Ständker L. Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides. Biomedicines 2021;9:1381. [PMID: 34680498 DOI: 10.3390/biomedicines9101381] [Reference Citation Analysis]
11 Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021;:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Reference Citation Analysis]
12 Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021;8:48. [PMID: 34496967 DOI: 10.1186/s40779-021-00343-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Yang Z, He S, Wu H, Yin T, Wang L, Shan A. Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Front Microbiol 2021;12:710199. [PMID: 34475862 DOI: 10.3389/fmicb.2021.710199] [Reference Citation Analysis]
14 Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv Drug Deliv Rev 2021;175:113818. [PMID: 34090965 DOI: 10.1016/j.addr.2021.05.028] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
15 Tan P, Fu H, Ma X. Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications. Nano Today 2021;39:101229. [DOI: 10.1016/j.nantod.2021.101229] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
16 Alabresm A, Chandler SL, Benicewicz BC, Decho AW. Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape. Bioconjug Chem 2021. [PMID: 34319073 DOI: 10.1021/acs.bioconjchem.1c00116] [Reference Citation Analysis]
17 Liang J, Sun D, Yang Y, Li M, Li H, Chen L. Discovery of metal-based complexes as promising antimicrobial agents. Eur J Med Chem 2021;224:113696. [PMID: 34274828 DOI: 10.1016/j.ejmech.2021.113696] [Reference Citation Analysis]
18 Kukushkina EA, Hossain SI, Sportelli MC, Ditaranto N, Picca RA, Cioffi N. Ag-Based Synergistic Antimicrobial Composites. A Critical Review. Nanomaterials (Basel) 2021;11:1687. [PMID: 34199123 DOI: 10.3390/nano11071687] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Tejaswi B, Gopal Sree V, Sivapriya E, Archana D, Pradeepkumar AR. Nanoparticles in caries prevention: A review. JGOH 2021;4:56-66. [DOI: 10.25259/jgoh_57_2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Li W, Song P, Xin Y, Kuang Z, Liu Q, Ge F, Zhu L, Zhang X, Tao Y, Zhang W. The Effects of Luminescent CdSe Quantum Dot-Functionalized Antimicrobial Peptides Nanoparticles on Antibacterial Activity and Molecular Mechanism. Int J Nanomedicine 2021;16:1849-67. [PMID: 33707943 DOI: 10.2147/IJN.S295928] [Reference Citation Analysis]
21 Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021;19:1335-60. [PMID: 33777334 DOI: 10.1016/j.csbj.2021.02.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
22 Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021;178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Preethi A, Bellare JR. Tailoring Scaffolds for Orthopedic Application With Anti-Microbial Properties: Current Scenario and Future Prospects. Front Mater 2021;7:594686. [DOI: 10.3389/fmats.2020.594686] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Díaz-zepeda D, Peralta-rodríguez RD, Puente-urbina B, Cortez-mazatan G, Meléndez-ortiz HI. pH responsive chitosan-coated microemulsions as drug delivery systems. International Journal of Polymeric Materials and Polymeric Biomaterials 2022;71:549-60. [DOI: 10.1080/00914037.2020.1857761] [Reference Citation Analysis]
25 Mangoni ML, Casciaro B. Development of Antimicrobial Peptides from Amphibians. Antibiotics (Basel) 2020;9:E772. [PMID: 33158031 DOI: 10.3390/antibiotics9110772] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
26 Fazly Bazzaz BS, Seyedi S, Hoseini Goki N, Khameneh B. Human Antimicrobial Peptides: Spectrum, Mode of Action and Resistance Mechanisms. Int J Pept Res Ther 2021;27:801-16. [DOI: 10.1007/s10989-020-10127-2] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Talapko J, Škrlec I. The Principles, Mechanisms, and Benefits of Unconventional Agents in the Treatment of Biofilm Infection. Pharmaceuticals (Basel) 2020;13:E299. [PMID: 33050521 DOI: 10.3390/ph13100299] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
28 Mercer DK, O'Neil DA. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front Immunol 2020;11:2177. [PMID: 33072081 DOI: 10.3389/fimmu.2020.02177] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Mukhopadhyay S, Bharath Prasad AS, Mehta CH, Nayak UY. Antimicrobial peptide polymers: no escape to ESKAPE pathogens-a review. World J Microbiol Biotechnol 2020;36:131. [PMID: 32737599 DOI: 10.1007/s11274-020-02907-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
30 Vazquez-munoz R, Lopez-ribot JL. Nanotechnology as an Alternative to Reduce the Spread of COVID-19. Challenges 2020;11:15. [DOI: 10.3390/challe11020015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
31 Drayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules 2020;25:E3048. [PMID: 32635310 DOI: 10.3390/molecules25133048] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
32 Liu X, Li Y, Li S, Lin Y, Li VL, Chen Y, Lin C, Keerthi M, Shih S, Chung R. Polyelectrolyte multilayer coatings for short/long-term release of antibacterial agents. Surface and Coatings Technology 2020;393:125696. [DOI: 10.1016/j.surfcoat.2020.125696] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules 2020;25:E2850. [PMID: 32575664 DOI: 10.3390/molecules25122850] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
34 Smerkova K, Dolezelikova K, Bozdechova L, Heger Z, Zurek L, Adam V. Nanomaterials with active targeting as advanced antimicrobials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1636. [PMID: 32363802 DOI: 10.1002/wnan.1636] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
35 Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Front Chem 2020;8:286. [PMID: 32391321 DOI: 10.3389/fchem.2020.00286] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 22.5] [Reference Citation Analysis]
36 Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D. Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation. Nanomaterials (Basel) 2020;10:E140. [PMID: 31941021 DOI: 10.3390/nano10010140] [Cited by in Crossref: 41] [Cited by in F6Publishing: 25] [Article Influence: 20.5] [Reference Citation Analysis]