BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vijayan V, Mohapatra A, Uthaman S, Park IK. Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials. Pharmaceutics 2019;11:E534. [PMID: 31615112 DOI: 10.3390/pharmaceutics11100534] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Singh CK, Sodhi KK. The emerging significance of nanomedicine-based approaches to fighting COVID-19 variants of concern: A perspective on the nanotechnology’s role in COVID-19 diagnosis and treatment. Front Nanotechnol 2023;4. [DOI: 10.3389/fnano.2022.1084033] [Reference Citation Analysis]
2 Ranjbariyan A, Haghighat S, Yazdi MH, Arbabi Bidgoli S. Synthetic selenium nanoparticles as co-adjuvant improved immune responses against methicillin-resistant Staphylococcus aureus. World J Microbiol Biotechnol 2022;39:16. [PMID: 36401129 DOI: 10.1007/s11274-022-03455-6] [Reference Citation Analysis]
3 Mohapatra A, Park I. Recent Advances in ROS-Scavenging Metallic Nanozymes for Anti-Inflammatory Diseases: A Review. Chonnam Med J 2023;59:13. [DOI: 10.4068/cmj.2023.59.1.13] [Reference Citation Analysis]
4 Mohanty A, Park I. Protein-Caged Nanoparticles: A Promising Nanomedicine Against Cancer. Chonnam Med J 2023;59:1. [DOI: 10.4068/cmj.2023.59.1.1] [Reference Citation Analysis]
5 Arab A, Nikpoor AR, Asadi P, Iraei R, Yazdian-robati R, Sheikh A, Kesharwani P. Virus-like nanoparticles (VLPs) based technology in the development of breast cancer ‎vaccines‎. Process Biochemistry 2022;123:44-51. [DOI: 10.1016/j.procbio.2022.10.020] [Reference Citation Analysis]
6 Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coordination Chemistry Reviews 2022;472:214788. [DOI: 10.1016/j.ccr.2022.214788] [Reference Citation Analysis]
7 Mokhtar AK, Mohd Hidzir N, Mohamed F, Abdul Rahman I, Mohd Fadzil S, Mohamed Radzi AM, Mohd Radzali NA. Gold nanoparticles as radiosensitizer for radiotherapy and diagnosis of COVID-19: A review. Nanoscale and Microscale Thermophysical Engineering 2022. [DOI: 10.1080/15567265.2022.2138803] [Reference Citation Analysis]
8 Jan N, Madni A, Khan S, Shah H, Akram F, Khan A, Ertas D, Bostanudin MF, Contag CH, Ashammakhi N, Ertas YN. Biomimetic cell membrane‐coated poly(lactic‐ co ‐glycolic acid) nanoparticles for biomedical applications. Bioengineering & Transla Med 2022. [DOI: 10.1002/btm2.10441] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 de Carvalho Lima EN, Barros Martins GL, Diaz RS, Schechter M, Piqueira JRC, Justo JF. Effects of Carbon Nanomaterials and Aloe vera on Melanomas—Where Are We? Recent Updates. Pharmaceutics 2022;14:2004. [DOI: 10.3390/pharmaceutics14102004] [Reference Citation Analysis]
10 Vijayan JG. Functionalization of Nanobiomaterials in Nanovaccinology. Nanovaccinology as Targeted Therapeutics 2022. [DOI: 10.1002/9781119858041.ch18] [Reference Citation Analysis]
11 Pushpalatha C, Kumar C, Sowmya S, Augustine D, Varghese EA, Suresh J. Current Research Trends on SARS‐CoV2 Virus Against Nanovaccine Formulation. Nanovaccinology as Targeted Therapeutics 2022. [DOI: 10.1002/9781119858041.ch4] [Reference Citation Analysis]
12 Dhas N, García MC, Kudarha R, Pandey A, Nikam AN, Gopalan D, Fernandes G, Soman S, Kulkarni S, Seetharam RN, Tiwari R, Wairkar S, Pardeshi C, Mutalik S. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022:S0168-3659(22)00213-9. [PMID: 35439581 DOI: 10.1016/j.jconrel.2022.04.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
13 Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv Drug Deliv Rev 2022;182:114107. [PMID: 34995678 DOI: 10.1016/j.addr.2021.114107] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
14 AlMalki FA, Albukhaty S, Alyamani AA, Khalaf MN, Thomas S. The relevant information about the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the five-question approach (when, where, what, why, and how) and its impact on the environment. Environ Sci Pollut Res Int 2022. [PMID: 35175517 DOI: 10.1007/s11356-022-18868-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Tseng CY, Wang WX, Douglas TR, Chou LYT. Engineering DNA Nanostructures to Manipulate Immune Receptor Signaling and Immune Cell Fates. Adv Healthc Mater 2022;11:e2101844. [PMID: 34716686 DOI: 10.1002/adhm.202101844] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 de Carvalho Lima EN, Octaviano ALM, Piqueira JRC, Diaz RS, Justo JF. Coronavirus and Carbon Nanotubes: Seeking Immunological Relationships to Discover Immunotherapeutic Possibilities. IJN 2022;Volume 17:751-81. [DOI: 10.2147/ijn.s341890] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Jampílek J, Kráľová K. Nanotechnology: New frontiers in anti-HIV therapy. Nanotechnological Applications in Virology 2022. [DOI: 10.1016/b978-0-323-99596-2.00011-x] [Reference Citation Analysis]
18 Guasch-Girbau A, Fernàndez-Busquets X. Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies. Pharmaceutics 2021;13:2189. [PMID: 34959470 DOI: 10.3390/pharmaceutics13122189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Goscianska J, Freund R, Wuttke S. Nanoscience versus Viruses: The SARS‐CoV‐2 Case. Adv Funct Materials 2022;32:2107826. [DOI: 10.1002/adfm.202107826] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhu W, Wei Z, Han C, Weng X. Nanomaterials as Promising Theranostic Tools in Nanomedicine and Their Applications in Clinical Disease Diagnosis and Treatment. Nanomaterials (Basel) 2021;11:3346. [PMID: 34947695 DOI: 10.3390/nano11123346] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 Kumbhar PS, Pandya AK, Manjappa AS, Disouza JI, Patravale VB. Carbohydrates-based diagnosis, prophylaxis and treatment of infectious diseases: Special emphasis on COVID-19. Carbohydrate Polymer Technologies and Applications 2021;2:100052. [DOI: 10.1016/j.carpta.2021.100052] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
22 Mohapatra A, Sathiyamoorthy P, Park IK. Metallic Nanoparticle-Mediated Immune Cell Regulation and Advanced Cancer Immunotherapy. Pharmaceutics 2021;13:1867. [PMID: 34834282 DOI: 10.3390/pharmaceutics13111867] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select. [DOI: 10.1002/nano.202100255] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
24 Balkrishna A, Arya V, Rohela A, Kumar A, Verma R, Kumar D, Nepovimova E, Kuca K, Thakur N, Thakur N, Kumar P. Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-Like Particle Vaccines. Vaccines (Basel) 2021;9:1129. [PMID: 34696237 DOI: 10.3390/vaccines9101129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
25 Bhutta ZA, Kanwal A, Ali M, Kulyar MF, Yao W, Shoaib M, Ashar A, Mahfooz A, Ijaz M, Ijaz N, Asif M, Nawaz S, Mahfooz MR, Kanwal T. Emerging nanotechnology role in the development of innovative solutions against COVID-19 pandemic. Nanotechnology 2021;32. [PMID: 34320471 DOI: 10.1088/1361-6528/ac189e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021;9:988. [PMID: 34579225 DOI: 10.3390/vaccines9090988] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 de Carvalho Lima EN, Diaz RS, Justo JF, Castilho Piqueira JR. Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. Int J Nanomedicine 2021;16:5411-35. [PMID: 34408416 DOI: 10.2147/IJN.S314308] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
28 Chen W, Jiang M, Yu W, Xu Z, Liu X, Jia Q, Guan X, Zhang W. CpG-Based Nanovaccines for Cancer Immunotherapy. Int J Nanomedicine 2021;16:5281-99. [PMID: 34385817 DOI: 10.2147/IJN.S317626] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
29 Sadiq IZ, Abubakar FS, Dan-iya BI. Role of nanoparticles in tackling COVID-19 pandemic: a bio-nanomedical approach. Journal of Taibah University for Science 2021;15:198-207. [DOI: 10.1080/16583655.2021.1944488] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Staroverov SA, Fomin AS, Kozlov SV, Volkov AA, Kozlov ES, Gabalov KP, Dykman LA. Immune Response of Mice Against Babesia canis Antigens is Enhanced When Antigen is Coupled to Gold Nanoparticles. Acta Parasitol 2021;66:493-500. [PMID: 33165701 DOI: 10.1007/s11686-020-00305-z] [Reference Citation Analysis]
31 Pippa N, Gazouli M, Pispas S. Recent Advances and Future Perspectives in Polymer-Based Nanovaccines. Vaccines (Basel) 2021;9:558. [PMID: 34073648 DOI: 10.3390/vaccines9060558] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
32 Rodrigues G, Gonçalves da Costa Sousa M, da Silva DC, Berto Rezende TM, de Morais PC, Franco OL. Nanostrategies to Develop Current Antiviral Vaccines. ACS Appl Bio Mater 2021;4:3880-3890. [DOI: 10.1021/acsabm.0c01284] [Reference Citation Analysis]
33 Chen X, Liu B, Tong R, Zhan L, Yin X, Luo X, Huang Y, Zhang J, He W, Wang Y. Orchestration of biomimetic membrane coating and nanotherapeutics in personalized anticancer therapy. Biomater Sci 2021;9:590-625. [PMID: 33305765 DOI: 10.1039/d0bm01617a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
34 Serag E, El-zeftawy M. Environmental aspect and applications of nanotechnology to eliminate COVID-19 epidemiology risk. Nanotechnol Environ Eng 2021;6:11. [DOI: 10.1007/s41204-021-00108-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Peres C, Matos AI, Moura LIF, Acúrcio RC, Carreira B, Pozzi S, Vaskovich-Koubi D, Kleiner R, Satchi-Fainaro R, Florindo HF. Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021;172:148-82. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
36 Asadi K, Gholami A. Virosome-based nanovaccines; a promising bioinspiration and biomimetic approach for preventing viral diseases: A review. Int J Biol Macromol 2021;182:648-58. [PMID: 33862071 DOI: 10.1016/j.ijbiomac.2021.04.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
37 Machhi J, Shahjin F, Das S, Patel M, Abdelmoaty MM, Cohen JD, Singh PA, Baldi A, Bajwa N, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gendelman HE, Kevadiya BD. Nanocarrier vaccines for SARS-CoV-2. Adv Drug Deliv Rev 2021;171:215-39. [PMID: 33428995 DOI: 10.1016/j.addr.2021.01.002] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 26.0] [Reference Citation Analysis]
38 Muluh TA, Chen Z, Li Y, Xiong K, Jin J, Fu S, Wu J. Enhancing Cancer Immunotherapy Treatment Goals by Using Nanoparticle Delivery System. Int J Nanomedicine 2021;16:2389-404. [PMID: 33790556 DOI: 10.2147/IJN.S295300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
39 Lin X, Wang X, Gu Q, Lei D, Liu X, Yao C. Emerging nanotechnological strategies to reshape tumor microenvironment for enhanced therapeutic outcomes of cancer immunotherapy. Biomed Mater 2021. [PMID: 33601351 DOI: 10.1088/1748-605X/abe7b3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
40 Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater 2021;:1-25. [PMID: 33615140 DOI: 10.1007/s42247-021-00168-8] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 20.0] [Reference Citation Analysis]
41 Mondal J, Revuri V, Hasan MN, Lee Y. Bio inspired materials for nonviral vaccine delivery. Bioinspired and Biomimetic Materials for Drug Delivery 2021. [DOI: 10.1016/b978-0-12-821352-0.00005-8] [Reference Citation Analysis]
42 Selvaraj J, Rajendran V, Ramalingam B. Nanovaccine: A Modern Approach to Vaccinology. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-61021-0_4] [Reference Citation Analysis]
43 Maus A, Strait L, Zhu D. Nanoparticles as delivery vehicles for antiviral therapeutic drugs. Engineered Regeneration 2021;2:31-46. [DOI: 10.1016/j.engreg.2021.03.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
44 Ahmad MZ, Ahmad J, Haque A, Alasmary MY, Abdel-wahab BA, Akhter S. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Review of Vaccines 2020;19:1053-71. [DOI: 10.1080/14760584.2020.1858058] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
45 Tosyali OA, Allahverdiyev A, Bagirova M, Abamor ES, Aydogdu M, Dinparvar S, Acar T, Mustafaeva Z, Derman S. Nano-co-delivery of lipophosphoglycan with soluble and autoclaved leishmania antigens into PLGA nanoparticles: Evaluation of in vitro and in vivo immunostimulatory effects against visceral leishmaniasis. Mater Sci Eng C Mater Biol Appl 2021;120:111684. [PMID: 33545846 DOI: 10.1016/j.msec.2020.111684] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
46 Cui Y, Sun J, Hao W, Chen M, Wang Y, Xu F, Gao C. Dual-Target Peptide-Modified Erythrocyte Membrane-Enveloped PLGA Nanoparticles for the Treatment of Glioma. Front Oncol 2020;10:563938. [PMID: 33194638 DOI: 10.3389/fonc.2020.563938] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
47 Campos EVR, Pereira AES, de Oliveira JL, Carvalho LB, Guilger-Casagrande M, de Lima R, Fraceto LF. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J Nanobiotechnology 2020;18:125. [PMID: 32891146 DOI: 10.1186/s12951-020-00685-4] [Cited by in Crossref: 112] [Cited by in F6Publishing: 116] [Article Influence: 37.3] [Reference Citation Analysis]
48 Cacicedo ML, Medina-Montano C, Kaps L, Kappel C, Gehring S, Bros M. Role of Liver-Mediated Tolerance in Nanoparticle-Based Tumor Therapy. Cells 2020;9:E1985. [PMID: 32872352 DOI: 10.3390/cells9091985] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
49 Stein DC, H Stocker L, Powell AE, Kebede S, Watts D, Williams E, Soto N, Dhabaria A, Fenselau C, Ganapati S, DeShong P. Extraction of Membrane Components from Neisseria gonorrhoeae Using Catanionic Surfactant Vesicles: A New Approach for the Study of Bacterial Surface Molecules. Pharmaceutics 2020;12:E787. [PMID: 32825235 DOI: 10.3390/pharmaceutics12090787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
50 Tang S, Han T, Wang Z, Yue N, Liu Z, Tang S, Yang X, Zhang Z, Zhou Y, Yuan W, Hao H, Sleman S, Pan D, Xuan B, Zhou W, Qian Z. Facile and Modular Pipeline for Protein-Specific Antibody Customization. ACS Appl Bio Mater 2020;3:4380-7. [DOI: 10.1021/acsabm.0c00385] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
51 Beg S, Alharbi KS, Alruwaili NK, Alotaibi NH, Almalki WH, Alenezi SK, Altowayan WM, Alshammari MS, Rahman M. Nanotherapeutic systems for delivering cancer vaccines: recent advances. Nanomedicine (Lond) 2020;15:1527-37. [PMID: 32410483 DOI: 10.2217/nnm-2020-0046] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
52 Yun CH, Cho CS. Nanoparticles to Improve the Efficacy of Vaccines. Pharmaceutics 2020;12:E418. [PMID: 32370192 DOI: 10.3390/pharmaceutics12050418] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
53 Dykman LA. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev Vaccines 2020;19:465-77. [PMID: 32306785 DOI: 10.1080/14760584.2020.1758070] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 16.0] [Reference Citation Analysis]
54 Liu Y, Guo J, Huang L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics 2020;10:3099-117. [PMID: 32194857 DOI: 10.7150/thno.42998] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 13.0] [Reference Citation Analysis]