BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dzmitruk V, Apartsin E, Ihnatsyeu-Kachan A, Abashkin V, Shcharbin D, Bryszewska M. Dendrimers Show Promise for siRNA and microRNA Therapeutics. Pharmaceutics 2018;10:E126. [PMID: 30096839 DOI: 10.3390/pharmaceutics10030126] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Manikkath J, Jishnu PV, Wich PR, Manikkath A, Radhakrishnan R. Nanoparticulate strategies for the delivery of miRNA mimics and inhibitors in anticancer therapy and its potential utility in oral submucous fibrosis. Nanomedicine (Lond) 2022. [PMID: 35014880 DOI: 10.2217/nnm-2021-0381] [Reference Citation Analysis]
2 Carregal-Romero S, Fadón L, Berra E, Ruíz-Cabello J. MicroRNA Nanotherapeutics for Lung Targeting. Insights into Pulmonary Hypertension. Int J Mol Sci 2020;21:E3253. [PMID: 32375361 DOI: 10.3390/ijms21093253] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
3 Apartsin E, Venyaminova A, Majoral JP, Caminade AM. Dendriplex-Impregnated Hydrogels With Programmed Release Rate. Front Chem 2021;9:780608. [PMID: 35071182 DOI: 10.3389/fchem.2021.780608] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Uğurlu Ö, Barlas FB, Evran S, Timur S. The cell-penetrating YopM protein-functionalized quantum dot-plasmid DNA conjugate as a novel gene delivery vector. Plasmid 2020;110:102513. [PMID: 32502501 DOI: 10.1016/j.plasmid.2020.102513] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Kornmueller K, Amri EZ, Scheideler M, Prassl R. Delivery of miRNAs to the adipose organ for metabolic health. Adv Drug Deliv Rev 2022;181:114110. [PMID: 34995679 DOI: 10.1016/j.addr.2021.114110] [Reference Citation Analysis]
6 Hueso M, Mallén A, Suñé-Pou M, Aran JM, Suñé-Negre JM, Navarro E. ncRNAs in Therapeutics: Challenges and Limitations in Nucleic Acid-Based Drug Delivery. Int J Mol Sci 2021;22:11596. [PMID: 34769025 DOI: 10.3390/ijms222111596] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Singh P, Singh A, Shah S, Vataliya J, Mittal A, Chitkara D. RNA Interference Nanotherapeutics for Treatment of Glioblastoma Multiforme. Mol Pharm 2020;17:4040-66. [PMID: 32902291 DOI: 10.1021/acs.molpharmaceut.0c00709] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Xie B, Du K, Huang F, Lin Z, Wu L. Cationic Nanomaterials for Autoimmune Diseases Therapy. Front Pharmacol 2022;12:762362. [DOI: 10.3389/fphar.2021.762362] [Reference Citation Analysis]
9 Knauer N, Pashkina E, Apartsin E. Topological Aspects of the Design of Nanocarriers for Therapeutic Peptides and Proteins. Pharmaceutics 2019;11:E91. [PMID: 30795556 DOI: 10.3390/pharmaceutics11020091] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
10 Krasheninina OA, Apartsin EK, Fuentes E, Szulc A, Ionov M, Venyaminova AG, Shcharbin D, de la Mata FJ, Bryszewska M, Gόmez R. Complexes of Pro-Apoptotic siRNAs and Carbosilane Dendrimers: Formation and Effect on Cancer Cells. Pharmaceutics 2019;11:E25. [PMID: 30634643 DOI: 10.3390/pharmaceutics11010025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
11 Rabiee N, Ahmadvand S, Ahmadi S, Fatahi Y, Dinarvand R, Bagherzadeh M, Rabiee M, Tahriri M, Tayebi L, Hamblin MR. Carbosilane dendrimers: Drug and gene delivery applications. Journal of Drug Delivery Science and Technology 2020;59:101879. [DOI: 10.1016/j.jddst.2020.101879] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
12 Noske S, Karimov M, Aigner A, Ewe A. Tyrosine-Modification of Polypropylenimine (PPI) and Polyethylenimine (PEI) Strongly Improves Efficacy of siRNA-Mediated Gene Knockdown. Nanomaterials (Basel) 2020;10:E1809. [PMID: 32927826 DOI: 10.3390/nano10091809] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Chen CK, Huang PK, Law WC, Chu CH, Chen NT, Lo LW. Biodegradable Polymers for Gene-Delivery Applications. Int J Nanomedicine 2020;15:2131-50. [PMID: 32280211 DOI: 10.2147/IJN.S222419] [Cited by in Crossref: 33] [Cited by in F6Publishing: 5] [Article Influence: 16.5] [Reference Citation Analysis]
14 Inoue M, Ueda M, Higashi T, Anno T, Fujisawa K, Motoyama K, Mizuguchi M, Ando Y, Jono H, Arima H. Therapeutic Potential of Polyamidoamine Dendrimer for Amyloidogenic Transthyretin Amyloidosis. ACS Chem Neurosci 2019;10:2584-90. [PMID: 30912637 DOI: 10.1021/acschemneuro.9b00059] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
15 Li H, Sun J, Zhu H, Wu H, Zhang H, Gu Z, Luo K. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1670. [PMID: 32949116 DOI: 10.1002/wnan.1670] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022;180:114068. [PMID: 34822926 DOI: 10.1016/j.addr.2021.114068] [Reference Citation Analysis]
17 Gangopadhyay S, Nikam RR, Gore KR. Folate Receptor-Mediated siRNA Delivery: Recent Developments and Future Directions for RNAi Therapeutics. Nucleic Acid Ther 2021;31:245-70. [PMID: 33595381 DOI: 10.1089/nat.2020.0882] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Karpenko LI, Apartsin EK, Dudko SG, Starostina EV, Kaplina ON, Antonets DV, Volosnikova EA, Zaitsev BN, Bakulina AY, Venyaminova AG, Ilyichev AA, Bazhan SI. Cationic Polymers for the Delivery of the Ebola DNA Vaccine Encoding Artificial T-Cell Immunogen. Vaccines (Basel) 2020;8:E718. [PMID: 33271964 DOI: 10.3390/vaccines8040718] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Stojceski F, Grasso G, Pallante L, Danani A. Molecular and Coarse-Grained Modeling to Characterize and Optimize Dendrimer-Based Nanocarriers for Short Interfering RNA Delivery. ACS Omega 2020;5:2978-86. [PMID: 32095720 DOI: 10.1021/acsomega.9b03908] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Vezza T, de Marañón AM, Canet F, Díaz-Pozo P, Marti M, D'Ocon P, Apostolova N, Rocha M, Víctor VM. MicroRNAs and Oxidative Stress: An Intriguing Crosstalk to Be Exploited in the Management of Type 2 Diabetes. Antioxidants (Basel) 2021;10:802. [PMID: 34069422 DOI: 10.3390/antiox10050802] [Reference Citation Analysis]
21 Yu Z, Reynaud F, Lorscheider M, Tsapis N, Fattal E. Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1630. [PMID: 32202079 DOI: 10.1002/wnan.1630] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Ambrosio L, Argenziano M, Cucci MA, Grattarola M, de Graaf IAM, Dianzani C, Barrera G, Sánchez Nieves J, Gomez R, Cavalli R, Pizzimenti S. Carbosilane Dendrimers Loaded with siRNA Targeting Nrf2 as a Tool to Overcome Cisplatin Chemoresistance in Bladder Cancer Cells. Antioxidants (Basel) 2020;9:E993. [PMID: 33066634 DOI: 10.3390/antiox9100993] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
23 Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021;175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
24 Pezuk JA, Salomão KB, Baroni M, Pereira CA, Geron L, Brassesco MS. Aberrantly expressed microRNAs and their implications in childhood central nervous system tumors. Cancer Metastasis Rev 2019;38:813-28. [PMID: 31797180 DOI: 10.1007/s10555-019-09820-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
25 Szwed A, Miłowska K, Michlewska S, Moreno S, Shcharbin D, Gomez-Ramirez R, de la Mata FJ, Majoral JP, Bryszewska M, Gabryelak T. Generation Dependent Effects and Entrance to Mitochondria of Hybrid Dendrimers on Normal and Cancer Neuronal Cells In Vitro. Biomolecules 2020;10:E427. [PMID: 32182909 DOI: 10.3390/biom10030427] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021;26:5976. [PMID: 34641519 DOI: 10.3390/molecules26195976] [Reference Citation Analysis]
27 Singh AK, Ghosh M, Kumar V, Aggarwal S, Patil SA. Interplay between miRNAs and Mycobacterium tuberculosis: diagnostic and therapeutic implications. Drug Discov Today 2021;26:1245-55. [PMID: 33497829 DOI: 10.1016/j.drudis.2021.01.021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Shcharbin D, Halets-bui I, Abashkin V, Dzmitruk V, Loznikova S, Odabaşı M, Acet Ö, Önal B, Özdemir N, Shcharbina N, Bryszewska M. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids and Surfaces B: Biointerfaces 2019;182:110354. [DOI: 10.1016/j.colsurfb.2019.110354] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 6.3] [Reference Citation Analysis]
29 Mandal AK. Dendrimers in targeted drug delivery applications: a review of diseases and cancer. International Journal of Polymeric Materials and Polymeric Biomaterials 2021;70:287-97. [DOI: 10.1080/00914037.2020.1713780] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
30 Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. International Journal of Polymeric Materials and Polymeric Biomaterials 2022;71:246-65. [DOI: 10.1080/00914037.2020.1825081] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Martínez-Negro M, Sánchez-Arribas N, Guerrero-Martínez A, Moyá ML, Tros de Ilarduya C, Mendicuti F, Aicart E, Junquera E. A Non-Viral Plasmid DNA Delivery System Consisting on a Lysine-Derived Cationic Lipid Mixed with a Fusogenic Lipid. Pharmaceutics 2019;11:E632. [PMID: 31783620 DOI: 10.3390/pharmaceutics11120632] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
32 Padayachee J, Daniels A, Balgobind A, Ariatti M, Singh M. HER-2/neu and MYC gene silencing in breast cancer: therapeutic potential and advancement in nonviral nanocarrier systems. Nanomedicine (Lond) 2020;15:1437-52. [PMID: 32515263 DOI: 10.2217/nnm-2019-0459] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
33 Thalji MR, Ibrahim AA, Ali GA. Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. European Polymer Journal 2021;160:110770. [DOI: 10.1016/j.eurpolymj.2021.110770] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Cunningham AJ, Gibson VP, Banquy X, Zhu X, Jeanne LC. Cholic acid-based mixed micelles as siRNA delivery agents for gene therapy. International Journal of Pharmaceutics 2020;578:119078. [DOI: 10.1016/j.ijpharm.2020.119078] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
35 Sztandera K, Gorzkiewicz M, Bątal M, Arkhipova V, Knauer N, Sánchez-nieves J, de la Mata FJ, Gómez R, Apartsin E, Klajnert-maculewicz B. Triazine–Carbosilane Dendrimersomes Enhance Cellular Uptake and Phototoxic Activity of Rose Bengal in Basal Cell Skin Carcinoma Cells. IJN 2022;Volume 17:1139-54. [DOI: 10.2147/ijn.s352349] [Reference Citation Analysis]
36 Xie D, Wang J, Hu G, Chen C, Yang H, Ritter JK, Qu Y, Li N. Kidney-Targeted Delivery of Prolyl Hydroxylase Domain Protein 2 Small Interfering RNA with Nanoparticles Alleviated Renal Ischemia/Reperfusion Injury. J Pharmacol Exp Ther 2021;378:235-43. [PMID: 34103333 DOI: 10.1124/jpet.121.000667] [Reference Citation Analysis]
37 Apartsin E, Knauer N, Arkhipova V, Pashkina E, Aktanova A, Poletaeva J, Sánchez-Nieves J, de la Mata FJ, Gómez R. pH-Sensitive Dendrimersomes of Hybrid Triazine-Carbosilane Dendritic Amphiphiles-Smart Vehicles for Drug Delivery. Nanomaterials (Basel) 2020;10:E1899. [PMID: 32977594 DOI: 10.3390/nano10101899] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
38 Abashkin V, Pędziwiatr-Werbicka E, Gómez R, de la Mata FJ, Dzmitruk V, Shcharbin D, Bryszewska M. Prospects of Cationic Carbosilane Dendronized Gold Nanoparticles as Non-viral Vectors for Delivery of Anticancer siRNAs siBCL-xL and siMCL-1. Pharmaceutics 2021;13:1549. [PMID: 34683842 DOI: 10.3390/pharmaceutics13101549] [Reference Citation Analysis]