BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Stanisçuaski Guterres S, Raffin Pohlmann A, Nicoli S. Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics 2018;10:E34. [PMID: 29543755 DOI: 10.3390/pharmaceutics10010034] [Cited by in Crossref: 106] [Cited by in F6Publishing: 89] [Article Influence: 26.5] [Reference Citation Analysis]
Number Citing Articles
1 Carvalho GC, Araujo VHS, Fonseca-Santos B, de Araújo JTC, de Souza MPC, Duarte JL, Chorilli M. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. Int J Pharm 2021;602:120635. [PMID: 33895295 DOI: 10.1016/j.ijpharm.2021.120635] [Reference Citation Analysis]
2 Scherließ R. Nasal formulations for drug administration and characterization of nasal preparations in drug delivery. Ther Deliv 2020;11:183-91. [PMID: 32046624 DOI: 10.4155/tde-2019-0086] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
3 Kim KT, Lee HS, Lee JJ, Park EK, Lee BS, Lee JY, Bae JS. Nanodelivery systems for overcoming limited transportation of therapeutic molecules through the blood-brain barrier. Future Med Chem 2018;10:2659-74. [PMID: 30499740 DOI: 10.4155/fmc-2018-0208] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
4 Shirsath NR, Goswami AK. Nanocarriers Based Novel Drug Delivery as Effective Drug Delivery: A Review. CNM 2019;4:71-83. [DOI: 10.2174/2405461504666190527101436] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Korshoj LE, Shi W, Duan B, Kielian T. The Prospect of Nanoparticle Systems for Modulating Immune Cell Polarization During Central Nervous System Infection. Front Immunol 2021;12:670931. [PMID: 34248952 DOI: 10.3389/fimmu.2021.670931] [Reference Citation Analysis]
6 Bruinsmann FA, Pigana S, Aguirre T, Dadalt Souto G, Garrastazu Pereira G, Bianchera A, Tiozzo Fasiolo L, Colombo G, Marques M, Raffin Pohlmann A, Stanisçuaski Guterres S, Sonvico F. Chitosan-Coated Nanoparticles: Effect of Chitosan Molecular Weight on Nasal Transmucosal Delivery. Pharmaceutics 2019;11:E86. [PMID: 30781722 DOI: 10.3390/pharmaceutics11020086] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 11.7] [Reference Citation Analysis]
7 Ye D, Zhang X, Yue Y, Raliya R, Biswas P, Taylor S, Tai YC, Rubin JB, Liu Y, Chen H. Focused ultrasound combined with microbubble-mediated intranasal delivery of gold nanoclusters to the brain. J Control Release 2018;286:145-53. [PMID: 30009893 DOI: 10.1016/j.jconrel.2018.07.020] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis]
8 Matías-Guiu J, Matías-Guiu JA, Montero-Escribano P, Barcia JA, Canales-Aguirre AA, Mateos-Diaz JC, Gómez-Pinedo U. Particles Containing Cells as a Strategy to Promote Remyelination in Patients With Multiple Sclerosis. Front Neurol 2020;11:638. [PMID: 32733364 DOI: 10.3389/fneur.2020.00638] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Sun Y, Li L, Xie H, Wang Y, Gao S, Zhang L, Bo F, Yang S, Feng A. Primary Studies on Construction and Evaluation of Ion-Sensitive in situ Gel Loaded with Paeonol-Solid Lipid Nanoparticles for Intranasal Drug Delivery. Int J Nanomedicine 2020;15:3137-60. [PMID: 32440115 DOI: 10.2147/IJN.S247935] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
10 Schlachet I, Sosnik A. Mixed Mucoadhesive Amphiphilic Polymeric Nanoparticles Cross a Model of Nasal Septum Epithelium in Vitro. ACS Appl Mater Interfaces 2019;11:21360-71. [PMID: 31124655 DOI: 10.1021/acsami.9b04766] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
11 Alshweiat A, Ambrus R, Csoka I. Intranasal Nanoparticulate Systems as Alternative Route of Drug Delivery. Curr Med Chem 2019;26:6459-92. [PMID: 31453778 DOI: 10.2174/0929867326666190827151741] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
12 Clementino AR, Marchi C, Pozzoli M, Bernini F, Zimetti F, Sonvico F. Anti-Inflammatory Properties of Statin-Loaded Biodegradable Lecithin/Chitosan Nanoparticles: A Step Toward Nose-to-Brain Treatment of Neurodegenerative Diseases. Front Pharmacol 2021;12:716380. [PMID: 34630094 DOI: 10.3389/fphar.2021.716380] [Reference Citation Analysis]
13 Albarki MA, Donovan MD. Bigger or Smaller? Size and Loading Effects on Nanoparticle Uptake Efficiency in the Nasal Mucosa. AAPS PharmSciTech 2020;21:294. [PMID: 33099728 DOI: 10.1208/s12249-020-01837-3] [Reference Citation Analysis]
14 Akita T, Kimura R, Akaguma S, Nagai M, Nakao Y, Tsugane M, Suzuki H, Oka JI, Yamashita C. Usefulness of cell-penetrating peptides and penetration accelerating sequence for nose-to-brain delivery of glucagon-like peptide-2. J Control Release 2021;335:575-83. [PMID: 34116136 DOI: 10.1016/j.jconrel.2021.06.007] [Reference Citation Analysis]
15 Andrés Real D, Gagliano A, Sonsini N, Wicky G, Orzan L, Leonardi D, Salomon C. Design and optimization of pH-sensitive Eudragit nanoparticles for improved oral delivery of triclabendazole. Int J Pharm 2022;:121594. [PMID: 35182705 DOI: 10.1016/j.ijpharm.2022.121594] [Reference Citation Analysis]
16 Salade L, Wauthoz N, Vermeersch M, Amighi K, Goole J. Chitosan-coated liposome dry-powder formulations loaded with ghrelin for nose-to-brain delivery. Eur J Pharm Biopharm 2018;129:257-66. [PMID: 29902517 DOI: 10.1016/j.ejpb.2018.06.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
17 de Oliveira Junior ER, Santos LCR, Salomão MA, Nascimento TL, de Almeida Ribeiro Oliveira G, Lião LM, Lima EM. Nose-to-brain drug delivery mediated by polymeric nanoparticles: influence of PEG surface coating. Drug Deliv Transl Res 2020;10:1688-99. [PMID: 32613550 DOI: 10.1007/s13346-020-00816-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
18 de Cristo Soares Alves A, Lavayen V, de Fraga Dias A, Bruinsmann FA, Scholl JN, Cé R, Visioli F, Oliveira Battastini AM, Stanisçuaski Guterres S, Figueiró F, Raffin Pohlmann A. EGFRvIII peptide nanocapsules and bevacizumab nanocapsules: a nose-to-brain multitarget approach against glioblastoma. Nanomedicine (Lond) 2021;16:1775-90. [PMID: 34313137 DOI: 10.2217/nnm-2021-0169] [Reference Citation Analysis]
19 Yoo SH, Kim HW, Lee JH. Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives. J Tissue Eng 2022;13:20417314221083414. [PMID: 35340424 DOI: 10.1177/20417314221083414] [Reference Citation Analysis]
20 Veronesi MC, Graner BD, Cheng SH, Zamora M, Zarrinmayeh H, Chen CT, Das SK, Vannier MW. Aerosolized In Vivo 3D Localization of Nose-to-Brain Nanocarrier Delivery Using Multimodality Neuroimaging in a Rat Model-Protocol Development. Pharmaceutics 2021;13:391. [PMID: 33804222 DOI: 10.3390/pharmaceutics13030391] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Sipos B, Szabó-Révész P, Csóka I, Pallagi E, Dobó DG, Bélteky P, Kónya Z, Deák Á, Janovák L, Katona G. Quality by Design Based Formulation Study of Meloxicam-Loaded Polymeric Micelles for Intranasal Administration. Pharmaceutics 2020;12:E697. [PMID: 32722099 DOI: 10.3390/pharmaceutics12080697] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
22 Rocha LA, Silva D, Barata‐antunes S, Cavaleiro H, Gomes ED, Silva NA, Salgado AJ. Cell and Tissue Instructive Materials for Central Nervous System Repair. Adv Funct Mater 2020;30:1909083. [DOI: 10.1002/adfm.201909083] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
23 Truzzi E, Rustichelli C, de Oliveira Junior ER, Ferraro L, Maretti E, Graziani D, Botti G, Beggiato S, Iannuccelli V, Lima EM, Dalpiaz A, Leo E. Nasal biocompatible powder of Geraniol oil complexed with cyclodextrins for neurodegenerative diseases: physicochemical characterization and in vivo evidences of nose to brain delivery. J Control Release 2021;335:191-202. [PMID: 34019946 DOI: 10.1016/j.jconrel.2021.05.020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Li S, Guo C, Zhang X, Liu X, Mu J, Liu C, Peng Y, Chang M. Self-assembling modified neuropeptide S enhances nose-to-brain penetration and exerts a prolonged anxiolytic-like effect. Biomater Sci 2021;9:4765-77. [PMID: 34037635 DOI: 10.1039/d1bm00380a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Kaneko K, Osman N, Carini V, Scagnetti G, Saleem I. Overview of the Advantages and Disadvantages of Different Mucosal Sites for the Delivery of Nanoparticles. In: Muttil P, Kunda NK, editors. Mucosal Delivery of Drugs and Biologics in Nanoparticles. Cham: Springer International Publishing; 2020. pp. 61-82. [DOI: 10.1007/978-3-030-35910-2_3] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Henriques P, Fortuna A, Doktorovová S. Spray dried powders for nasal delivery: Process and formulation considerations. Eur J Pharm Biopharm 2022:S0939-6411(22)00090-X. [PMID: 35568256 DOI: 10.1016/j.ejpb.2022.05.002] [Reference Citation Analysis]
27 Phongpradist R, Thongchai W, Thongkorn K, Lekawanvijit S, Chittasupho C. Surface Modification of Curcumin Microemulsions by Coupling of KLVFF Peptide: A Prototype for Targeted Bifunctional Microemulsions. Polymers 2022;14:443. [DOI: 10.3390/polym14030443] [Reference Citation Analysis]
28 Ceña V, Játiva P. Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. Nanomedicine 2018;13:1513-6. [DOI: 10.2217/nnm-2018-0139] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 12.8] [Reference Citation Analysis]
29 Xu T, Zhao S, Lin C, Zheng X, Lan M. Recent advances in nanomaterials for sonodynamic therapy. Nano Res 2020;13:2898-908. [DOI: 10.1007/s12274-020-2992-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
30 Ahmad A, Mubarak N, Naseem K, Tabassum H, Rizwan M, Najda A, Kashif M, Bin-jumah M, Hussain A, Shaheen A, Abdel-daim MM, Ali S, Hussain S. Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. Arabian Journal of Chemistry 2020;13:8935-64. [DOI: 10.1016/j.arabjc.2020.10.019] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
31 Ghosh S, Lalani R, Patel V, Bhowmick S, Misra A. Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opinion on Drug Delivery 2019;16:1287-311. [DOI: 10.1080/17425247.2019.1676721] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
32 Chatzitaki AT, Jesus S, Karavasili C, Andreadis D, Fatouros DG, Borges O. Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. Int J Pharm 2020;589:119776. [PMID: 32818538 DOI: 10.1016/j.ijpharm.2020.119776] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
33 Nair SC, Vinayan KP, Mangalathillam S. Nose to Brain Delivery of Phenytoin Sodium Loaded Nano Lipid Carriers: Formulation, Drug Release, Permeation and In Vivo Pharmacokinetic Studies. Pharmaceutics 2021;13:1640. [PMID: 34683933 DOI: 10.3390/pharmaceutics13101640] [Reference Citation Analysis]
34 Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. Mol Neurodegener 2019;14:20. [PMID: 31159836 DOI: 10.1186/s13024-019-0323-7] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 20.3] [Reference Citation Analysis]
35 Olatunji TL, Siebert F, Adetunji AE, Harvey BH, Gericke J, Hamman JH, Van der Kooy F. Sceletium tortuosum: A review on its phytochemistry, pharmacokinetics, biological, pre-clinical and clinical activities. J Ethnopharmacol 2021;:114711. [PMID: 34758918 DOI: 10.1016/j.jep.2021.114711] [Reference Citation Analysis]
36 Zada MH, Kubek M, Khan W, Kumar A, Domb A. Dispersible hydrolytically sensitive nanoparticles for nasal delivery of thyrotropin releasing hormone (TRH). J Control Release 2019;295:278-89. [PMID: 30610951 DOI: 10.1016/j.jconrel.2018.12.050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
37 Shringarpure M, Gharat S, Momin M, Omri A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin Drug Deliv 2021;18:169-85. [PMID: 32921169 DOI: 10.1080/17425247.2021.1823965] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
38 Rahaman ST. The Role of Nanomedicine in the Treatment of Neurodegenerative Disorders. In: Rai M, Yadav A, editors. Nanobiotechnology in Neurodegenerative Diseases. Cham: Springer International Publishing; 2019. pp. 49-63. [DOI: 10.1007/978-3-030-30930-5_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Zakir F, Ahmad A, Farooq U, Mirza MA, Tripathi A, Singh D, Shakeel F, Mohapatra S, Ahmad FJ, Kohli K. Design and development of a commercially viable in situ nanoemulgel for the treatment of postmenopausal osteoporosis. Nanomedicine 2020;15:1167-87. [DOI: 10.2217/nnm-2020-0079] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
40 Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. Journal of Drug Delivery Science and Technology 2021;64:102642. [DOI: 10.1016/j.jddst.2021.102642] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Buchthal B, Weiss U, Bading H. Post-injury Nose-to-Brain Delivery of Activin A and SerpinB2 Reduces Brain Damage in a Mouse Stroke Model. Mol Ther 2018;26:2357-65. [PMID: 30093305 DOI: 10.1016/j.ymthe.2018.07.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
42 Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. Adv Therap 2021;4:2000076. [DOI: 10.1002/adtp.202000076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
43 Ling TS, Chandrasegaran S, Xuan LZ, Suan TL, Elaine E, Nathan DV, Chai YH, Gunasekaran B, Salvamani S. The Potential Benefits of Nanotechnology in Treating Alzheimer's Disease. Biomed Res Int 2021;2021:5550938. [PMID: 34285915 DOI: 10.1155/2021/5550938] [Reference Citation Analysis]
44 Bonferoni MC, Rossi S, Sandri G, Ferrari F, Gavini E, Rassu G, Giunchedi P. Nanoemulsions for "Nose-to-Brain" Drug Delivery. Pharmaceutics 2019;11:E84. [PMID: 30781585 DOI: 10.3390/pharmaceutics11020084] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 16.0] [Reference Citation Analysis]
45 Hinge NS, Kathuria H, Pandey MM. Engineering of structural and functional properties of nanotherapeutics and nanodiagnostics for intranasal brain targeting in Alzheimer's. Applied Materials Today 2022;26:101303. [DOI: 10.1016/j.apmt.2021.101303] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Hao R, Sun B, Yang L, Ma C, Li S. RVG29-modified microRNA-loaded nanoparticles improve ischemic brain injury by nasal delivery. Drug Deliv 2020;27:772-81. [PMID: 32400219 DOI: 10.1080/10717544.2020.1760960] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
47 Kataria I, Shende P. Nose-to-brain lipid nanocarriers: An active transportation across BBB in migraine management. Chem Phys Lipids 2022;:105177. [PMID: 35122739 DOI: 10.1016/j.chemphyslip.2022.105177] [Reference Citation Analysis]
48 Hu Y, Jiang K, Wang D, Yao S, Lu L, Wang H, Song J, Zhou J, Fan X, Wang Y, Lu W, Wang J, Wei G. Core-shell lipoplexes inducing active macropinocytosis promote intranasal delivery of c-Myc siRNA for treatment of glioblastoma. Acta Biomater 2021:S1742-7061(21)00711-X. [PMID: 34757231 DOI: 10.1016/j.actbio.2021.10.042] [Reference Citation Analysis]
49 Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Nanosized Transferosome-Based Intranasal In Situ Gel for Brain Targeting of Resveratrol: Formulation, Optimization, In Vitro Evaluation, and In Vivo Pharmacokinetic Study. AAPS PharmSciTech 2019;20:181. [PMID: 31049748 DOI: 10.1208/s12249-019-1353-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 8.3] [Reference Citation Analysis]
50 Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 2018;143:155-70. [PMID: 30449731 DOI: 10.1016/j.brainresbull.2018.10.009] [Cited by in Crossref: 157] [Cited by in F6Publishing: 133] [Article Influence: 39.3] [Reference Citation Analysis]
51 Saleh A, Khalifa M, Shawky S, Bani-ali A, Eassa H. Zolmitriptan Intranasal Spanlastics for Enhanced Migraine Treatment; Formulation Parameters Optimized via Quality by Design Approach. Sci Pharm 2021;89:24. [DOI: 10.3390/scipharm89020024] [Reference Citation Analysis]
52 Zhou C, Sun P, Xu Y, Chen Y, Huang Y, Hamblin MH, Foley L, Hitchens TK, Li S, Yin KJ. Genetic Deficiency of MicroRNA-15a/16-1 Confers Resistance to Neuropathological Damage and Cognitive Dysfunction in Experimental Vascular Cognitive Impairment and Dementia. Adv Sci (Weinh) 2022;:e2104986. [PMID: 35403823 DOI: 10.1002/advs.202104986] [Reference Citation Analysis]
53 Lee D, Minko T. Nanotherapeutics for Nose-to-Brain Drug Delivery: An Approach to Bypass the Blood Brain Barrier. Pharmaceutics 2021;13:2049. [PMID: 34959331 DOI: 10.3390/pharmaceutics13122049] [Reference Citation Analysis]
54 Cortés H, Alcalá-Alcalá S, Caballero-Florán IH, Bernal-Chávez SA, Ávalos-Fuentes A, González-Torres M, González-Del Carmen M, Figueroa-González G, Reyes-Hernández OD, Floran B, Del Prado-Audelo ML, Leyva-Gómez G. A Reevaluation of Chitosan-Decorated Nanoparticles to Cross the Blood-Brain Barrier. Membranes (Basel) 2020;10:E212. [PMID: 32872576 DOI: 10.3390/membranes10090212] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
55 Li G, Sun X, Wan X, Wang D. Lactoferrin-Loaded PEG/PLA Block Copolymer Targeted With Anti-Transferrin Receptor Antibodies for Alzheimer Disease. Dose Response 2020;18:1559325820917836. [PMID: 32863801 DOI: 10.1177/1559325820917836] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Mostafavi E, Medina-Cruz D, Vernet-Crua A, Chen J, Cholula-Díaz JL, Guisbiers G, Webster TJ. Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics? Expert Opin Drug Deliv 2021;18:715-36. [PMID: 33332168 DOI: 10.1080/17425247.2021.1865306] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
57 Bruinsmann FA, de Cristo Soares Alves A, de Fraga Dias A, Lopes Silva LF, Visioli F, Raffin Pohlmann A, Figueiró F, Sonvico F, Stanisçuaski Guterres S. Nose-to-brain delivery of simvastatin mediated by chitosan-coated lipid-core nanocapsules allows for the treatment of glioblastoma in vivo. Int J Pharm 2022;616:121563. [PMID: 35151819 DOI: 10.1016/j.ijpharm.2022.121563] [Reference Citation Analysis]
58 Barros C, Aranha N, Severino P, Souto EB, Zielińska A, Lopes A, Rios A, Batain F, Crescencio K, Chaud M, Alves T. Quality by Design Approach for the Development of Liposome Carrying Ghrelin for Intranasal Administration. Pharmaceutics 2021;13:686. [PMID: 34068793 DOI: 10.3390/pharmaceutics13050686] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Salade L, Wauthoz N, Goole J, Amighi K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int J Pharm 2019;561:47-65. [PMID: 30822505 DOI: 10.1016/j.ijpharm.2019.02.026] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
60 Uppuluri CT, Ravi PR, Dalvi AV. Design and evaluation of thermo-responsive nasal in situ gelling system dispersed with piribedil loaded lecithin-chitosan hybrid nanoparticles for improved brain availability. Neuropharmacology 2021;201:108832. [PMID: 34627852 DOI: 10.1016/j.neuropharm.2021.108832] [Reference Citation Analysis]
61 Piazzini V, Landucci E, D'Ambrosio M, Tiozzo Fasiolo L, Cinci L, Colombo G, Pellegrini-Giampietro DE, Bilia AR, Luceri C, Bergonzi MC. Chitosan coated human serum albumin nanoparticles: A promising strategy for nose-to-brain drug delivery. Int J Biol Macromol 2019;129:267-80. [PMID: 30726749 DOI: 10.1016/j.ijbiomac.2019.02.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 9.3] [Reference Citation Analysis]
62 Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. Nat Rev Mater. [DOI: 10.1038/s41578-021-00394-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Chung EP, Cotter JD, Prakapenka AV, Cook RL, DiPerna DM, Sirianni RW. Targeting Small Molecule Delivery to the Brain and Spinal Cord via Intranasal Administration of Rabies Virus Glycoprotein (RVG29)-Modified PLGA Nanoparticles. Pharmaceutics 2020;12:E93. [PMID: 31991664 DOI: 10.3390/pharmaceutics12020093] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
64 Giunchedi P, Gavini E, Bonferoni MC. Nose-to-Brain Delivery. Pharmaceutics 2020;12:E138. [PMID: 32041344 DOI: 10.3390/pharmaceutics12020138] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
65 Badhe RV, Nipate SS. Nasal Bioadhesive Drug Delivery Systems and Their Applications. In: Mittal K, Bakshi IS, Narang JK, editors. Bioadhesives in Drug Delivery. Wiley; 2020. pp. 259-305. [DOI: 10.1002/9781119640240.ch10] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
66 Torres-Ortega PV, Saludas L, Hanafy AS, Garbayo E, Blanco-Prieto MJ. Micro- and nanotechnology approaches to improve Parkinson's disease therapy. J Control Release 2019;295:201-13. [PMID: 30579984 DOI: 10.1016/j.jconrel.2018.12.036] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
67 Tashima T. Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules 2020;25:E5188. [PMID: 33171799 DOI: 10.3390/molecules25215188] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
68 Rehman S, Nabi B, Zafar A, Baboota S, Ali J. Intranasal delivery of mucoadhesive nanocarriers: a viable option for Parkinson's disease treatment? Expert Opin Drug Deliv 2019;16:1355-66. [PMID: 31663382 DOI: 10.1080/17425247.2019.1684895] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
69 Fonseca-Santos B, Chorilli M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm 2020;589:119832. [PMID: 32877730 DOI: 10.1016/j.ijpharm.2020.119832] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
70 Tseng YY, Chen TY, Liu SJ. Role of Polymeric Local Drug Delivery in Multimodal Treatment of Malignant Glioma: A Review. Int J Nanomedicine 2021;16:4597-614. [PMID: 34267515 DOI: 10.2147/IJN.S309937] [Reference Citation Analysis]
71 Clementino AR, Pellegrini G, Banella S, Colombo G, Cantù L, Sonvico F, Del Favero E. Structure and Fate of Nanoparticles Designed for the Nasal Delivery of Poorly Soluble Drugs. Mol Pharm 2021;18:3132-46. [PMID: 34259534 DOI: 10.1021/acs.molpharmaceut.1c00366] [Reference Citation Analysis]
72 Trapani A, Corbo F, Agrimi G, Ditaranto N, Cioffi N, Perna F, Quivelli A, Stefàno E, Lunetti P, Muscella A, Marsigliante S, Cricenti A, Luce M, Mormile C, Cataldo A, Bellucci S. Oxidized Alginate Dopamine Conjugate: In Vitro Characterization for Nose-to-Brain Delivery Application. Materials (Basel) 2021;14:3495. [PMID: 34201634 DOI: 10.3390/ma14133495] [Reference Citation Analysis]
73 Som Chaudhury S, Sinha K, Das Mukhopadhyay C. Intranasal route: The green corridor for Alzheimer's disease therapeutics. Journal of Drug Delivery Science and Technology 2021;66:102791. [DOI: 10.1016/j.jddst.2021.102791] [Reference Citation Analysis]
74 Ahmad E, Lv Y, Zhu Q, Qi J, Dong X, Zhao W, Chen Z, Wu W, Lu Y. TAT modification facilitates nose-to-brain transport of intact mPEG-PDLLA micelles: Evidence from aggregation-caused quenching probes. Applied Materials Today 2020;19:100556. [DOI: 10.1016/j.apmt.2020.100556] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
75 Di Gioia S, Trapani A, Cassano R, Di Gioia ML, Trombino S, Cellamare S, Bolognino I, Hossain MN, Sanna E, Trapani G, Conese M. Nose-to-brain delivery: A comparative study between carboxymethyl chitosan based conjugates of dopamine. Int J Pharm 2021;599:120453. [PMID: 33675929 DOI: 10.1016/j.ijpharm.2021.120453] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Penteado L, Lopes VF, Karam TK, Nakamura CV, Khalil NM, Mainardes RM. Chitosan-coated poly(є-caprolactone) nanocapsules for mucoadhesive applications of perillyl alcohol. Soft Materials 2022;20:1-11. [DOI: 10.1080/1539445x.2021.1906702] [Reference Citation Analysis]
77 Katona G, Balogh GT, Dargó G, Gáspár R, Márki Á, Ducza E, Sztojkov-Ivanov A, Tömösi F, Kecskeméti G, Janáky T, Kiss T, Ambrus R, Pallagi E, Szabó-Révész P, Csóka I. Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach. Pharmaceutics 2020;12:E97. [PMID: 31991767 DOI: 10.3390/pharmaceutics12020097] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
78 Abourehab MAS, Khames A, Genedy S, Mostafa S, Khaleel MA, Omar MM, El Sisi AM. Sesame Oil-Based Nanostructured Lipid Carriers of Nicergoline, Intranasal Delivery System for Brain Targeting of Synergistic Cerebrovascular Protection. Pharmaceutics 2021;13:581. [PMID: 33921796 DOI: 10.3390/pharmaceutics13040581] [Reference Citation Analysis]
79 Le MQ, Carpentier R, Lantier I, Ducournau C, Dimier-Poisson I, Betbeder D. Residence time and uptake of porous and cationic maltodextrin-based nanoparticles in the nasal mucosa: Comparison with anionic and cationic nanoparticles. Int J Pharm 2018;550:316-24. [PMID: 30171898 DOI: 10.1016/j.ijpharm.2018.08.054] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
80 Olatunji TL, Siebert F, Adetunji AE, Harvey BH, Gericke J, Hamman JH, Van der Kooy F. Sceletium tortuosum: A review on its phytochemistry, pharmacokinetics, biological and clinical activities. J Ethnopharmacol 2021;280:114476. [PMID: 34333104 DOI: 10.1016/j.jep.2021.114476] [Reference Citation Analysis]
81 Bruinsmann FA, Richter Vaz G, de Cristo Soares Alves A, Aguirre T, Raffin Pohlmann A, Stanisçuaski Guterres S, Sonvico F. Nasal Drug Delivery of Anticancer Drugs for the Treatment of Glioblastoma: Preclinical and Clinical Trials. Molecules 2019;24:E4312. [PMID: 31779126 DOI: 10.3390/molecules24234312] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
82 Khatoon M, Sohail MF, Shahnaz G, Ur Rehman F, Fakhar-Ud-Din, Ur Rehman A, Ullah N, Amin U, Khan GM, Shah KU. Development and Evaluation of Optimized Thiolated Chitosan Proniosomal Gel Containing Duloxetine for Intranasal Delivery. AAPS PharmSciTech 2019;20:288. [PMID: 31410741 DOI: 10.1208/s12249-019-1484-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
83 Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021;18:849-76. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Goel H, Kalra V, Verma SK, Dubey SK, Tiwary AK. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J Control Release 2021;341:782-811. [PMID: 34906605 DOI: 10.1016/j.jconrel.2021.12.009] [Reference Citation Analysis]
85 Akel H, Csóka I, Ambrus R, Bocsik A, Gróf I, Mészáros M, Szecskó A, Kozma G, Veszelka S, Deli MA, Kónya Z, Katona G. In Vitro Comparative Study of Solid Lipid and PLGA Nanoparticles Designed to Facilitate Nose-to-Brain Delivery of Insulin. Int J Mol Sci 2021;22:13258. [PMID: 34948054 DOI: 10.3390/ijms222413258] [Reference Citation Analysis]
86 Majcher MJ, Babar A, Lofts A, Leung A, Li X, Abu-Hijleh F, Smeets NMB, Mishra RK, Hoare T. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J Control Release 2021;330:738-52. [PMID: 33383097 DOI: 10.1016/j.jconrel.2020.12.050] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
87 Gangurde PK, Ajitkumar B. N, Kumar L. Lamotrigine Lipid Nanoparticles for Effective Treatment of Epilepsy: a Focus on Brain Targeting via Nasal Route. J Pharm Innov 2019;14:91-111. [DOI: 10.1007/s12247-018-9343-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
88 Shamarekh KS, Gad HA, Soliman ME, Sammour OA. Development and evaluation of protamine-coated PLGA nanoparticles for nose-to-brain delivery of tacrine: In-vitro and in-vivo assessment. Journal of Drug Delivery Science and Technology 2020;57:101724. [DOI: 10.1016/j.jddst.2020.101724] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
89 Ortiz M, de Sa Coutinho D, Ciambarella BT, de Souza ET, D'Almeida APL, Durli TL, Rodrigues E Silva PM, Bernardi A, Sonvico F, Pohlmann AR, Martins MA, Guterres SS. Intranasal administration of budesonide-loaded nanocapsule microagglomerates as an innovative strategy for asthma treatment. Drug Deliv Transl Res 2020;10:1700-15. [PMID: 32789546 DOI: 10.1007/s13346-020-00813-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
90 Song J, Lu C, Leszek J, Zhang J. Design and Development of Nanomaterial-Based Drug Carriers to Overcome the Blood-Brain Barrier by Using Different Transport Mechanisms. Int J Mol Sci 2021;22:10118. [PMID: 34576281 DOI: 10.3390/ijms221810118] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Di Cola E, Cantu' L, Brocca P, Rondelli V, Fadda GC, Canelli E, Martelli P, Clementino A, Sonvico F, Bettini R, Del Favero E. Novel O/W nanoemulsions for nasal administration: Structural hints in the selection of performing vehicles with enhanced mucopenetration. Colloids Surf B Biointerfaces 2019;183:110439. [PMID: 31473410 DOI: 10.1016/j.colsurfb.2019.110439] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
92 Bicker J, Fortuna A, Alves G, Falcão A. Nose-to-brain Delivery of Natural Compounds for the Treatment of Central Nervous System Disorders. Curr Pharm Des 2020;26:594-619. [PMID: 31939728 DOI: 10.2174/1381612826666200115101544] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
93 Forbes B, Bommer R, Goole J, Hellfritzsch M, De Kruijf W, Lambert P, Caivano G, Regard A, Schiaretti F, Trenkel M, Vecellio L, Williams G, Sonvico F, Scherließ R. A consensus research agenda for optimising nasal drug delivery. Expert Opin Drug Deliv 2020;17:127-32. [PMID: 31928241 DOI: 10.1080/17425247.2020.1714589] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
94 Espinoza LC, Silva-Abreu M, Clares B, Rodríguez-Lagunas MJ, Halbaut L, Cañas MA, Calpena AC. Formulation Strategies to Improve Nose-to-Brain Delivery of Donepezil. Pharmaceutics 2019;11:E64. [PMID: 30717264 DOI: 10.3390/pharmaceutics11020064] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
95 Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer's disease. Eur J Pharm Biopharm 2020;148:38-53. [PMID: 31926222 DOI: 10.1016/j.ejpb.2019.12.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
96 Mitsou E, Pletsa V, Sotiroudis GT, Panine P, Zoumpanioti M, Xenakis A. Development of a microemulsion for encapsulation and delivery of gallic acid. The role of chitosan. Colloids Surf B Biointerfaces 2020;190:110974. [PMID: 32208193 DOI: 10.1016/j.colsurfb.2020.110974] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
97 Akel H, Ismail R, Katona G, Sabir F, Ambrus R, Csóka I. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: Formulation, characterization, and in vitro evaluation. Int J Pharm 2021;604:120724. [PMID: 34023443 DOI: 10.1016/j.ijpharm.2021.120724] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Zuglianello C, Lemos-Senna E. The nanotechnological approach for nasal delivery of peptide drugs: a comprehensive review. J Microencapsul 2022;:1-29. [PMID: 35262455 DOI: 10.1080/02652048.2022.2051626] [Reference Citation Analysis]
99 Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021;13:1897. [PMID: 34834311 DOI: 10.3390/pharmaceutics13111897] [Reference Citation Analysis]
100 Prasanna P, Upadhyay A. Flavonoid-Based Nanomedicines in Alzheimer's Disease Therapeutics: Promises Made, a Long Way To Go. ACS Pharmacol Transl Sci 2021;4:74-95. [PMID: 33615162 DOI: 10.1021/acsptsci.0c00224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
101 Bakkari MA, Valiveti CK, Kaushik RS, Tummala H. Toll-like Receptor-4 (TLR4) Agonist-Based Intranasal Nanovaccine Delivery System for Inducing Systemic and Mucosal Immunity. Mol Pharm 2021;18:2233-41. [PMID: 34010002 DOI: 10.1021/acs.molpharmaceut.0c01256] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
102 Elsenosy FM, Abdelbary GA, Elshafeey AH, Elsayed I, Fares AR. Brain Targeting of Duloxetine HCL via Intranasal Delivery of Loaded Cubosomal Gel: In vitro Characterization, ex vivo Permeation, and in vivo Biodistribution Studies. Int J Nanomedicine 2020;15:9517-37. [PMID: 33324051 DOI: 10.2147/IJN.S277352] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
103 Sola P, Krishnamurthy P, Chintamaneni PK, Pindiprolu SKS, Kumari M. Novel drug delivery systems of β2 adrenoreceptor agonists to suppress SNCA gene expression and mitochondrial oxidative stress in Parkinson’s disease management. Expert Opinion on Drug Delivery 2020;17:1119-32. [DOI: 10.1080/17425247.2020.1779218] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
104 Pandey V, Gadeval A, Asati S, Jain P, Jain N, Roy RK, Tekade M, Soni V, Tekade RK. Formulation strategies for nose-to-brain delivery of therapeutic molecules. Drug Delivery Systems. Elsevier; 2020. pp. 291-332. [DOI: 10.1016/b978-0-12-814487-9.00007-7] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
105 Milane L, Dolare S, Jahan T, Amiji M. Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. Nanomedicine 2021;37:102422. [PMID: 34175455 DOI: 10.1016/j.nano.2021.102422] [Reference Citation Analysis]
106 Porfiryeva NN, Nasibullin SF, Abdullina SG, Tukhbatullina IK, Moustafine RI, Khutoryanskiy VV. Acrylated Eudragit® E PO as a novel polymeric excipient with enhanced mucoadhesive properties for application in nasal drug delivery. Int J Pharm 2019;562:241-8. [PMID: 30880105 DOI: 10.1016/j.ijpharm.2019.03.027] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
107 Gómez-Pinedo U, Matías-Guiu JA, Benito-Martín MS, Moreno-Jiménez L, Sanclemente-Alamán I, Selma-Calvo B, Pérez-Suarez S, Sancho-Bielsa F, Canales-Aguirre A, Mateos-Díaz JC, Hernández-Sapiéns MA, Reza-Zaldívar EE, Ojeda-Hernández DD, Vidorreta-Ballesteros L, Montero-Escribano P, Matías-Guiu J. Intranasal Administration of Undifferentiated Oligodendrocyte Lineage Cells as a Potential Approach to Deliver Oligodendrocyte Precursor Cells into Brain. Int J Mol Sci 2021;22:10738. [PMID: 34639079 DOI: 10.3390/ijms221910738] [Reference Citation Analysis]
108 Gieszinger P, Stefania Csaba N, Garcia-Fuentes M, Prasanna M, Gáspár R, Sztojkov-Ivanov A, Ducza E, Márki Á, Janáky T, Kecskeméti G, Katona G, Szabó-Révész P, Ambrus R. Preparation and characterization of lamotrigine containing nanocapsules for nasal administration. Eur J Pharm Biopharm 2020;153:177-86. [PMID: 32531424 DOI: 10.1016/j.ejpb.2020.06.003] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
109 D'Souza AA, Kutlehria S, Huang D, Bleier BS, Amiji MM. Nasal delivery of nanotherapeutics for CNS diseases: challenges and opportunities. Nanomedicine (Lond) 2021;16:2651-5. [PMID: 34802292 DOI: 10.2217/nnm-2021-0311] [Reference Citation Analysis]
110 Demisli S, Mitsou E, Pletsa V, Xenakis A, Papadimitriou V. Development and Study of Nanoemulsions and Nanoemulsion-Based Hydrogels for the Encapsulation of Lipophilic Compounds. Nanomaterials (Basel) 2020;10:E2464. [PMID: 33317080 DOI: 10.3390/nano10122464] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
111 de Oliveira Junior ER, Nascimento TL, Salomão MA, da Silva ACG, Valadares MC, Lima EM. Increased Nose-to-Brain Delivery of Melatonin Mediated by Polycaprolactone Nanoparticles for the Treatment of Glioblastoma. Pharm Res 2019;36:131. [PMID: 31263962 DOI: 10.1007/s11095-019-2662-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
112 Khadka B, Lee JY, Park DH, Kim KT, Bae JS. The Role of Natural Compounds and their Nanocarriers in the Treatment of CNS Inflammation. Biomolecules 2020;10:E1401. [PMID: 33019651 DOI: 10.3390/biom10101401] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
113 O'Connell RC, Dodd TM, Clingerman SM, Fluharty KL, Coyle J, Stueckle TA, Porter DW, Bowers L, Stefaniak AB, Knepp AK, Derk R, Wolfarth M, Mercer RR, Boots TE, Sriram K, Hubbs AF. Developing a Solution for Nasal and Olfactory Transport of Nanomaterials. Toxicol Pathol 2022;:1926233221089209. [PMID: 35416103 DOI: 10.1177/01926233221089209] [Reference Citation Analysis]
114 Agnihotri TG, Jadhav GS, Sahu B, Jain A. Recent trends of bioconjugated nanomedicines through nose-to-brain delivery for neurological disorders. Drug Deliv and Transl Res . [DOI: 10.1007/s13346-022-01173-y] [Reference Citation Analysis]