BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang J, Kim CS, Tu TH, Kim MS, Goto T, Kawada T, Choi MS, Park T, Sung MK, Yun JW, Choe SY, Lee JH, Joe Y, Choi HS, Back SH, Chung HT, Yu R. Quercetin Protects Obesity-Induced Hypothalamic Inflammation by Reducing Microglia-Mediated Inflammatory Responses via HO-1 Induction. Nutrients 2017;9:E650. [PMID: 28644409 DOI: 10.3390/nu9070650] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 7.6] [Reference Citation Analysis]
Number Citing Articles
1 Mullins CA, Gannaban RB, Khan MS, Shah H, Siddik MAB, Hegde VK, Reddy PH, Shin AC. Neural Underpinnings of Obesity: The Role of Oxidative Stress and Inflammation in the Brain. Antioxidants (Basel) 2020;9:E1018. [PMID: 33092099 DOI: 10.3390/antiox9101018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
2 Sato S, Mukai Y. Modulation of Chronic Inflammation by Quercetin: The Beneficial Effects on Obesity. J Inflamm Res 2020;13:421-31. [PMID: 32848440 DOI: 10.2147/JIR.S228361] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
3 Kim JK, Park SU. Quercetin and its role in biological functions: an updated review. EXCLI J 2018;17:856-63. [PMID: 30233284 DOI: 10.17179/excli2018-1538] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
4 Fang X, Ge K, Song C, Ge Y, Zhang J. Effects of n-3PUFAs on autophagy and inflammation of hypothalamus and body weight in mice. Biochem Biophys Res Commun 2018;501:927-32. [PMID: 29772234 DOI: 10.1016/j.bbrc.2018.05.084] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
5 Lacerda DC, Urquiza-Martínez MV, Manhaes-de-Castro R, Visco DB, Derosier C, Mercado-Camargo R, Torner L, Toscano AE, Guzmán-Quevedo O. Metabolic and neurological consequences of the treatment with polyphenols: a systematic review in rodent models of noncommunicable diseases. Nutr Neurosci 2021;:1-17. [PMID: 33650943 DOI: 10.1080/1028415X.2021.1891614] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Xiang J, Bian C, Wan X, Zhang Q, Huang S, Wu D. Sleeve Gastrectomy Reversed Obesity-Induced Hypogonadism in a Rat Model by Regulating Inflammatory Responses in the Hypothalamus and Testis. Obes Surg 2018;28:2272-80. [PMID: 29508270 DOI: 10.1007/s11695-018-3150-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
7 Tamtaji OR, Hadinezhad T, Fallah M, Shahmirzadi AR, Taghizadeh M, Behnam M, Asemi Z. The Therapeutic Potential of Quercetin in Parkinson's Disease: Insights into its Molecular and Cellular Regulation. Curr Drug Targets 2020;21:509-18. [PMID: 31721700 DOI: 10.2174/1389450120666191112155654] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
8 Wang XL, Li L. Microglia Regulate Neuronal Circuits in Homeostatic and High-Fat Diet-Induced Inflammatory Conditions. Front Cell Neurosci 2021;15:722028. [PMID: 34720877 DOI: 10.3389/fncel.2021.722028] [Reference Citation Analysis]
9 Mutsnaini L, Kim CS, Kim J, Joe Y, Chung HT, Choi HS, Roh E, Kim MS, Yu R. Fibroblast growth factor 21 deficiency aggravates obesity-induced hypothalamic inflammation and impairs thermogenic response. Inflamm Res 2019;68:351-8. [PMID: 30863887 DOI: 10.1007/s00011-019-01222-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
10 Mendes NF, Kim YB, Velloso LA, Araújo EP. Hypothalamic Microglial Activation in Obesity: A Mini-Review. Front Neurosci 2018;12:846. [PMID: 30524228 DOI: 10.3389/fnins.2018.00846] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
11 Lim H, Heo MY, Kim HP. Flavonoids: Broad Spectrum Agents on Chronic Inflammation. Biomol Ther (Seoul) 2019;27:241-53. [PMID: 31006180 DOI: 10.4062/biomolther.2019.034] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
12 Yang Y, Liu X, Wu T, Zhang W, Shu J, He Y, Tang SJ. Quercetin attenuates AZT-induced neuroinflammation in the CNS. Sci Rep 2018;8:6194. [PMID: 29670213 DOI: 10.1038/s41598-018-24618-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
13 Li H, Di G, Zhang Y, Xue R, Zhang J, Liang J. MicroRNA-155 and microRNA-181a, via HO-1, participate in regulating the immunotoxicity of cadmium in the kidneys of exposed Cyprinus carpio. Fish & Shellfish Immunology 2019;95:473-80. [DOI: 10.1016/j.fsi.2019.11.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
14 Chen R, Yang Y, Xu J, Pan Y, Zhang W, Xing Y, Ni H, Sun Y, Hou Y, Li N. Tamarix hohenackeri Bunge exerts anti-inflammatory effects on lipopolysaccharide-activated microglia in vitro. Phytomedicine 2018;40:10-9. [DOI: 10.1016/j.phymed.2017.12.035] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
15 Kim J, Kwon YH, Kim CS, Tu TH, Kim BS, Joe Y, Chung HT, Goto T, Kawada T, Park T, Choi MS, Kim MS, Yu R. The involvement of 4-1BB/4-1BBL signaling in glial cell-mediated hypothalamic inflammation in obesity. FEBS Open Bio 2018;8:843-53. [PMID: 29744298 DOI: 10.1002/2211-5463.12426] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
16 Choi H, Kim CS, Yu R. Quercetin Upregulates Uncoupling Protein 1 in White/Brown Adipose Tissues through Sympathetic Stimulation (J Obes Metab Syndr 2018;27:102-9). J Obes Metab Syndr 2019;28:71-2. [PMID: 31089583 DOI: 10.7570/jomes.2019.28.1.71] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 Samodien E, Johnson R, Pheiffer C, Mabasa L, Erasmus M, Louw J, Chellan N. Diet-induced hypothalamic dysfunction and metabolic disease, and the therapeutic potential of polyphenols. Mol Metab 2019;27:1-10. [PMID: 31300352 DOI: 10.1016/j.molmet.2019.06.022] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
18 Agartan ES, Mogulkoc R, Baltaci AK, Menevse E, Dasdelen D, Avunduk MC. 3',4'-Dihydroxyflavonol (DiOHF) prevents DNA damage, lipid peroxidation and inflammation in ovarian ischaemia-reperfusion injury of rats. J Obstet Gynaecol 2021;:1-8. [PMID: 34159896 DOI: 10.1080/01443615.2021.1916813] [Reference Citation Analysis]
19 Choi H, Kim CS, Yu R. Quercetin Upregulates Uncoupling Protein 1 in White/Brown Adipose Tissues through Sympathetic Stimulation. J Obes Metab Syndr 2018;27:102-9. [PMID: 31089549 DOI: 10.7570/jomes.2018.27.2.102] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
20 Zhang X, Cai Y, Zhang W, Chen X. Quercetin ameliorates pulmonary fibrosis by inhibiting SphK1/S1P signaling. Biochem Cell Biol 2018;96:742-51. [DOI: 10.1139/bcb-2017-0302] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
21 Sun JL, Abd El-Aty AM, Jeong JH, Jung TW. Ginsenoside Rb2 Ameliorates LPS-Induced Inflammation and ER Stress in HUVECs and THP-1 Cells via the AMPK-Mediated Pathway. Am J Chin Med 2020;48:967-85. [PMID: 32431178 DOI: 10.1142/S0192415X20500469] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Macedo F, Dos Santos LS, Glezer I, da Cunha FM. Brain Innate Immune Response in Diet-Induced Obesity as a Paradigm for Metabolic Influence on Inflammatory Signaling. Front Neurosci 2019;13:342. [PMID: 31068773 DOI: 10.3389/fnins.2019.00342] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
23 Ou Q, Zheng Z, Zhao Y, Lin W. Impact of quercetin on systemic levels of inflammation: a meta-analysis of randomised controlled human trials. Int J Food Sci Nutr 2020;71:152-63. [PMID: 31213101 DOI: 10.1080/09637486.2019.1627515] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
24 Mutsnaini L, Yang J, Kim J, Kim C, Lee C, Kim M, Park T, Goto T, Yu R. Filbertone Protects Obesity-induced Hypothalamic Inflammation by Reduction of Microglia-mediated Inflammatory Responses. Biotechnol Bioproc E 2021;26:86-92. [DOI: 10.1007/s12257-020-0220-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Hahn D, Shin SH, Bae JS. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants (Basel) 2020;9:E1191. [PMID: 33260980 DOI: 10.3390/antiox9121191] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Zhao L, Rao S, Zhu X, Liu S, Tao Q, Yang X, Zhu Y, Hu J. Coicis Semen formula treating monosodium glutamate-induced obesity in mice by alleviating hypothalamic injury. Food and Agricultural Immunology 2020;31:84-99. [DOI: 10.1080/09540105.2019.1703911] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Westfall S, Pasinetti GM. The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Front Neurosci 2019;13:1196. [PMID: 31749681 DOI: 10.3389/fnins.2019.01196] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
28 Ogino N, Miyagawa K, Nagaoka K, Matsuura-Harada Y, Ogino S, Kusanaga M, Oe S, Honma Y, Harada M, Eitoku M, Suganuma N, Ogino K. Role of HO-1 against Saturated Fatty Acid-Induced Oxidative Stress in Hepatocytes. Nutrients 2021;13:993. [PMID: 33808635 DOI: 10.3390/nu13030993] [Reference Citation Analysis]
29 Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020;12:E2393. [PMID: 32785059 DOI: 10.3390/nu12082393] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
30 Chunchai T, Chattipakorn N, Chattipakorn SC. The possible factors affecting microglial activation in cases of obesity with cognitive dysfunction. Metab Brain Dis 2018;33:615-35. [PMID: 29164373 DOI: 10.1007/s11011-017-0151-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
31 Rahman MH, Bhusal A, Lee W, Lee I, Suk K. Hypothalamic inflammation and malfunctioning glia in the pathophysiology of obesity and diabetes: Translational significance. Biochemical Pharmacology 2018;153:123-33. [DOI: 10.1016/j.bcp.2018.01.024] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
32 Milanova IV, Correa-da-Silva F, Kalsbeek A, Yi CX. Mapping of Microglial Brain Region, Sex and Age Heterogeneity in Obesity. Int J Mol Sci 2021;22:3141. [PMID: 33808700 DOI: 10.3390/ijms22063141] [Reference Citation Analysis]
33 Xue W, Fan Z, Li L, Lu J, Zhai Y, Zhao J. The chemokine system and its role in obesity. J Cell Physiol 2019;234:3336-46. [PMID: 30375006 DOI: 10.1002/jcp.27293] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
34 Benameur T, Soleti R, Porro C. The Potential Neuroprotective Role of Free and Encapsulated Quercetin Mediated by miRNA against Neurological Diseases. Nutrients 2021;13:1318. [PMID: 33923599 DOI: 10.3390/nu13041318] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 Li M, Zhang C, Li X, Lv Z, Chen Y, Zhao J. Isoquercitrin promotes the osteogenic differentiation of osteoblasts and BMSCs via the RUNX2 or BMP pathway. Connect Tissue Res 2019;60:189-99. [PMID: 29852784 DOI: 10.1080/03008207.2018.1483358] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
36 Costa SO, Souza CM, Lanza PG, Sartori JO, Ignacio-Souza LM, Candreva T, Rodrigues HG, Torsoni AS, Milanski M, Torsoni MA. Maternal high fat diet consumption reduces liver alpha7 nicotinic cholinergic receptor expression and impairs insulin signalling in the offspring. Sci Rep 2020;10:48. [PMID: 31913329 DOI: 10.1038/s41598-019-56880-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
37 Ho KV, Lei Z, Sumner LW, Coggeshall MV, Hsieh HY, Stewart GC, Lin CH. Identifying Antibacterial Compounds in Black Walnuts (Juglans nigra) Using a Metabolomics Approach. Metabolites 2018;8:E58. [PMID: 30274312 DOI: 10.3390/metabo8040058] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
38 Zhou J, Mao L, Xu P, Wang Y. Effects of (-)-Epigallocatechin Gallate (EGCG) on Energy Expenditure and Microglia-Mediated Hypothalamic Inflammation in Mice Fed a High-Fat Diet. Nutrients 2018;10:E1681. [PMID: 30400620 DOI: 10.3390/nu10111681] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]