1 |
Wang B, Li Y, Zhou M, Han Y, Zhang M, Gao Z, Liu Z, Chen P, Du W, Zhang X, Feng X, Liu BF. Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nat Commun 2023;14:1341. [PMID: 36906581 DOI: 10.1038/s41467-023-36017-x] [Reference Citation Analysis]
|
2 |
Zhang Q, Kuang G, Li W, Wang J, Ren H, Zhao Y. Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy. Nanomicro Lett 2023;15:44. [PMID: 36752939 DOI: 10.1007/s40820-023-01018-4] [Reference Citation Analysis]
|
3 |
Xu Q, Lan X, Lin H, Xi Q, Wang M, Quan X, Yao G, Yu Z, Wang Y, Yu M. Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1842. [PMID: 35989568 DOI: 10.1002/wnan.1842] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Bal-öztürk A, Tietilu ŞD, Yücel O, Erol T, Akgüner ZP, Darıcı H, Alarcin E, Emik S. Hyperbranched polymer-based nanoparticle drug delivery platform for the nucleus-targeting in cancer therapy. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104195] [Reference Citation Analysis]
|
5 |
Sahkulubey Kahveci EL, Kahveci MU, Celebi A, Avsar T, Derman S. Glycopolymer and Poly(β-amino ester)-Based Amphiphilic Block Copolymer as a Drug Carrier. Biomacromolecules 2022;23:4896-4908. [DOI: 10.1021/acs.biomac.2c01076] [Reference Citation Analysis]
|
6 |
Ghazimoradi M, Tarlani A, Alemi A, Hamishehkar H, Ghorbani M. pH-responsive, magnetic-luminescent core/shell carriers for co-delivery of anticancer drugs (MTX & DOX) for breast cancer treatment. Journal of Alloys and Compounds 2022. [DOI: 10.1016/j.jallcom.2022.168257] [Reference Citation Analysis]
|
7 |
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01626-z] [Reference Citation Analysis]
|
8 |
Zhang M, Zhang Z, Song X, Zhu J, Sng JA, Li J, Wen Y. Synthesis and Characterization of Palmitoyl- block -poly(methacryloyloxyethyl Phosphorylcholine) Polymer Micelles for Anticancer Drug Delivery. Biomacromolecules. [DOI: 10.1021/acs.biomac.2c00838] [Reference Citation Analysis]
|
9 |
Zhou M, Zhang J, Cai X, Dou R, Ruan L, Yang W, Lin W, Chen J, Hu Y. Tumor-Penetrating and Mitochondria-Targeted Drug Delivery Overcomes Doxorubicin Resistance in Lung Cancer. Chin J Polym Sci. [DOI: 10.1007/s10118-022-2775-4] [Reference Citation Analysis]
|
10 |
Ruan L, Chen J, Du C, Lu H, Zhang J, Cai X, Dou R, Lin W, Chai Z, Nie G, Hu Y. Mitochondrial temperature-responsive drug delivery reverses drug resistance in lung cancer. Bioactive Materials 2022;13:191-9. [DOI: 10.1016/j.bioactmat.2021.10.045] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
|
11 |
Ruan H, Li Y, Wang C, Jiang Y, Han Y, Li Y, Zheng D, Ye J, Chen G, Yang G, Deng L, Guo M, Zhang X, Tang Y, Cui W. Click chemistry extracellular vesicle/peptide/chemokine nanomissiles for treating central nervous systems injuries. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.06.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Shi Y, Hu Y, Jiang N, Yetisen AK. Fluorescence Sensing Technologies for Ophthalmic Diagnosis. ACS Sens 2022. [PMID: 35640088 DOI: 10.1021/acssensors.2c00313] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
13 |
Zhu Y, Xu P, Zhang X, Wu D. Emerging porous organic polymers for biomedical applications. Chem Soc Rev . [DOI: 10.1039/d1cs00871d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
|
14 |
Gao D, Shi Y, Ni J, Chen S, Wang Y, Zhao B, Song M, Guo X, Ren X, Zhang X, Tian Z, Yang Z. NIR/MRI-Guided Oxygen-Independent Carrier-Free Anti-Tumor Nano-Theranostics. Small 2021;:e2106000. [PMID: 34854571 DOI: 10.1002/smll.202106000] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
15 |
Sharmin S, Rahaman MM, Martorell M, Sastre-Serra J, Sharifi-Rad J, Butnariu M, Bagiu IC, Bagiu RV, Islam MT. Cytotoxicity of synthetic derivatives against breast cancer and multi-drug resistant breast cancer cell lines: a literature-based perspective study. Cancer Cell Int 2021;21:612. [PMID: 34801046 DOI: 10.1186/s12935-021-02309-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
16 |
Liu Q, Yan Y, Wu Y, Zhang X, Zhou X. Systematic thermodynamic study of clorsulon dissolved in ten organic solvents: Mechanism evaluation by modeling and molecular dynamic simulation. Journal of Molecular Liquids 2021;341:117217. [DOI: 10.1016/j.molliq.2021.117217] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Ruiz-Esparza GU, Wang X, Zhang X, Jimenez-Vazquez S, Diaz-Gomez L, Lavoie AM, Afewerki S, Fuentes-Baldemar AA, Parra-Saldivar R, Jiang N, Annabi N, Saleh B, Yetisen AK, Sheikhi A, Jozefiak TH, Shin SR, Dong N, Khademhosseini A. Nanoengineered Shear-Thinning Hydrogel Barrier for Preventing Postoperative Abdominal Adhesions. Nanomicro Lett 2021;13:212. [PMID: 34664123 DOI: 10.1007/s40820-021-00712-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
|
18 |
Li J, Wang Y, Xu C, Yu Q, Wang X, Xie H, Tian L, Qiu Y, Guo R, Lu Z, Li M, He Q. Rapid pH-responsive self-disintegrating nanoassemblies balance tumor accumulation and penetration for enhanced anti-breast cancer therapy. Acta Biomater 2021;134:546-58. [PMID: 33882357 DOI: 10.1016/j.actbio.2021.04.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
19 |
Li J, Song S, Meng J, Tan L, Liu X, Zheng Y, Li Z, Yeung KWK, Cui Z, Liang Y, Zhu S, Zhang X, Wu S. 2D MOF Periodontitis Photodynamic Ion Therapy. J Am Chem Soc 2021;143:15427-39. [PMID: 34516125 DOI: 10.1021/jacs.1c07875] [Cited by in Crossref: 56] [Cited by in F6Publishing: 64] [Article Influence: 28.0] [Reference Citation Analysis]
|
20 |
Li Z, Zhang X, Guo Z, Shi L, Jin L, Zhu L, Cai X, Zhang J, Zhang Y, Li J. Nature-derived bionanomaterials for sustained release of 5-fluorouracil to inhibit subconjunctival fibrosis. Materials Today Advances 2021;11:100150. [DOI: 10.1016/j.mtadv.2021.100150] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
|
21 |
Yang Y, Wei X, Zhang N, Zheng J, Chen X, Wen Q, Luo X, Lee CY, Liu X, Zhang X, Chen J, Tao C, Zhang W, Fan X. A non-printed integrated-circuit textile for wireless theranostics. Nat Commun 2021;12:4876. [PMID: 34385436 DOI: 10.1038/s41467-021-25075-8] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 13.5] [Reference Citation Analysis]
|
22 |
Ávila-Ortega A, Carrillo-Cocom LM, Olán-Noverola CE, Nic-Can GI, Vilchis-Nestor AR, Talavera-Pech WA. Increased Toxicity of Doxorubicin Encapsulated into pH-Responsive Poly(β-Amino Ester)-Functionalized MCM-41 Silica Nanoparticles. Curr Drug Deliv 2020;17:799-805. [PMID: 32723272 DOI: 10.2174/1567201817999200728123915] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
23 |
Hyun J, Eom J, Song J, Seo I, Um SH, Park KM, Bhang SH. Poly(amino ester)-Based Polymers for Gene and Drug Delivery Systems and Further Application toward Cell Culture System. Macromol Biosci 2021;21:e2100106. [PMID: 34117832 DOI: 10.1002/mabi.202100106] [Reference Citation Analysis]
|
24 |
Lai X, Geng X, Li M, Tang M, Liu Q, Yang M, Shen L, Zhu Y, Wang S. Glutathione-responsive PLGA nanocomplex for dual delivery of doxorubicin and curcumin to overcome tumor multidrug resistance. Nanomedicine (Lond) 2021;16:1411-27. [PMID: 34047204 DOI: 10.2217/nnm-2021-0100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Gao D, Chen T, Chen S, Ren X, Han Y, Li Y, Wang Y, Guo X, Wang H, Chen X, Guo M, Zhang YS, Hong G, Zhang X, Tian Z, Yang Z. Targeting Hypoxic Tumors with Hybrid Nanobullets for Oxygen-Independent Synergistic Photothermal and Thermodynamic Therapy. Nanomicro Lett 2021;13:99. [PMID: 34138317 DOI: 10.1007/s40820-021-00616-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 39] [Article Influence: 14.5] [Reference Citation Analysis]
|
26 |
Jin L, Guo X, Gao D, Wu C, Hu B, Tan G, Du N, Cai X, Yang Z, Zhang X. NIR-responsive MXene nanobelts for wound healing. NPG Asia Mater 2021;13. [DOI: 10.1038/s41427-021-00289-w] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
|
27 |
Paliwal R, Paliwal SR, Kenwat R. Nanomedicine-based multidrug resistance reversal strategies in cancer therapy. Nano Drug Delivery Strategies for the Treatment of Cancers 2021. [DOI: 10.1016/b978-0-12-819793-6.00013-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
28 |
Iqbal S, Qu Y, Dong Z, Zhao J, Rauf Khan A, Rehman S, Zhao Z. Poly (β‐amino esters) based potential drug delivery and targeting polymer; an overview and perspectives (review). European Polymer Journal 2020;141:110097. [DOI: 10.1016/j.eurpolymj.2020.110097] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
|
29 |
Wang Y, Gao D, Liu Y, Guo X, Chen S, Zeng L, Ma J, Zhang X, Tian Z, Yang Z. Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact Mater 2021;6:1513-27. [PMID: 33294730 DOI: 10.1016/j.bioactmat.2020.11.016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
|
30 |
Yang Z, Gao D, Guo X, Jin L, Zheng J, Wang Y, Chen S, Zheng X, Zeng L, Guo M, Zhang X, Tian Z. Fighting Immune Cold and Reprogramming Immunosuppressive Tumor Microenvironment with Red Blood Cell Membrane-Camouflaged Nanobullets. ACS Nano 2020. [PMID: 33166111 DOI: 10.1021/acsnano.0c07721] [Cited by in Crossref: 97] [Cited by in F6Publishing: 112] [Article Influence: 32.3] [Reference Citation Analysis]
|
31 |
Velsankar K, Preethi R, Ram PJ, Ramesh M, Sudhahar S. Evaluations of biosynthesized Ag nanoparticles via Allium Sativum flower extract in biological applications. Appl Nanosci 2020;10:3675-91. [DOI: 10.1007/s13204-020-01463-2] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
|
32 |
Huang H, Zhou M, Ruan L, Wang D, Lu H, Zhang J, Chen J, Hu Y, Chai Z. AMPK mediates the neurotoxicity of iron oxide nanoparticles retained in mitochondria or lysosomes. Metallomics 2019;11:1200-6. [PMID: 31241124 DOI: 10.1039/c9mt00103d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
33 |
Guan Y, Wang LY, Wang B, Ding MH, Bao YL, Tan SW. Recent Advances of D-α-tocopherol Polyethylene Glycol 1000 Succinate Based Stimuli-responsive Nanomedicine for Cancer Treatment. Curr Med Sci 2020;40:218-31. [PMID: 32337683 DOI: 10.1007/s11596-020-2185-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
34 |
Şen S, Top A. Potansiyel doksorubisin taşıyıcı sistemi olarak PEG-endozom parçalayıcı peptit konjugatının değerlendirilmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2020. [DOI: 10.17341/gazimmfd.629183] [Reference Citation Analysis]
|
35 |
Chen W, Tian X, He W, Li J, Feng Y, Pan G. Emerging functional materials based on chemically designed molecular recognition. BMC Mat 2020;2. [DOI: 10.1186/s42833-019-0007-1] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 13.7] [Reference Citation Analysis]
|
36 |
Bi Y, Wang M, Peng L, Ruan L, Zhou M, Hu Y, Chen J, Gao J. Photo/thermo-responsive and size-switchable nanoparticles for chemo-photothermal therapy against orthotopic breast cancer. Nanoscale Adv 2020;2:210-3. [DOI: 10.1039/c9na00652d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
37 |
Khademolhosseini R, Jafari A, Mousavi SM, Manteghian M, Fakhroueian Z. Synthesis of silica nanoparticles with different morphologies and their effects on enhanced oil recovery. Appl Nanosci 2020;10:1105-14. [DOI: 10.1007/s13204-019-01222-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
38 |
Ruan L, Wang M, Zhou M, Lu H, Zhang J, Gao J, Chen J, Hu Y. Doxorubicin–Metal Coordinated Micellar Nanoparticles for Intracellular Codelivery and Chemo/Chemodynamic Therapy in Vitro. ACS Appl Bio Mater 2019;2:4703-7. [DOI: 10.1021/acsabm.9b00879] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
39 |
Wang J, Li S, Chen T, Xian W, Zhang H, Wu L, Zhu W, Zeng Q. Nanoscale cationic micelles of amphiphilic copolymers based on star-shaped PLGA and PEI cross-linked PEG for protein delivery application. J Mater Sci: Mater Med 2019;30. [DOI: 10.1007/s10856-019-6294-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
40 |
Jia L, Jia N, Gao Y, Hu H, Zhao X, Chen D, Qiao M. Multi-Modulation of Doxorubicin Resistance in Breast Cancer Cells by Poly(l-histidine)-Based Multifunctional Micelles. Pharmaceutics 2019;11:E385. [PMID: 31382390 DOI: 10.3390/pharmaceutics11080385] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
|
41 |
Cai L, Wang C, Chen H, Qian H, Lin Z, Zhang X. Hydrogen bonding-based self-assembly technology for high-performance melt blending TPU/PA6 polymers. Appl Nanosci 2020;10:51-9. [DOI: 10.1007/s13204-019-01096-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
42 |
Wang D, Zhou M, Huang H, Ruan L, Lu H, Zhang J, Chen J, Gao J, Chai Z, Hu Y. Gold Nanoparticle-Based Probe for Analyzing Mitochondrial Temperature in Living Cells. ACS Appl Bio Mater 2019;2:3178-82. [DOI: 10.1021/acsabm.9b00463] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
|
43 |
Zhang X, Parekh G, Guo B, Huang X, Dong Y, Han W, Chen X, Xiao G. Polyphenol and self-assembly: metal polyphenol nanonetwork for drug delivery and pharmaceutical applications. Future Drug Discovery 2019;1:FDD7. [DOI: 10.4155/fdd-2019-0001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
|
44 |
Zhou M, Huang H, Wang D, Lu H, Chen J, Chai Z, Yao SQ, Hu Y. Light-Triggered PEGylation/dePEGylation of the Nanocarriers for Enhanced Tumor Penetration. Nano Lett 2019;19:3671-5. [DOI: 10.1021/acs.nanolett.9b00737] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 18.8] [Reference Citation Analysis]
|
45 |
Wang D, Huang H, Zhou M, Lu H, Chen J, Chang YT, Gao J, Chai Z, Hu Y. A thermoresponsive nanocarrier for mitochondria-targeted drug delivery. Chem Commun (Camb) 2019;55:4051-4. [PMID: 30870553 DOI: 10.1039/c9cc00603f] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 11.5] [Reference Citation Analysis]
|
46 |
Li M, Guo JW, Wen WQ, Chen JK. Biodegradable Redox-Sensitive Star Polymer Nanomicelles for Enhancing Doxorubicin Delivery. Nanomaterials (Basel) 2019;9:E547. [PMID: 30987287 DOI: 10.3390/nano9040547] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
|