BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: van der Valk DC, van der Ven CFT, Blaser MC, Grolman JM, Wu PJ, Fenton OS, Lee LH, Tibbitt MW, Andresen JL, Wen JR, Ha AH, Buffolo F, van Mil A, Bouten CVC, Body SC, Mooney DJ, Sluijter JPG, Aikawa M, Hjortnaes J, Langer R, Aikawa E. Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics. Nanomaterials (Basel) 2018;8:E296. [PMID: 29751516 DOI: 10.3390/nano8050296] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 10.8] [Reference Citation Analysis]
Number Citing Articles
1 Peters MC, Kruithof BPT, Bouten CVC, Voets IK, van den Bogaerdt A, Goumans MJ, van Wijk A. Preservation of human heart valves for replacement in children with heart valve disease: past, present and future. Cell Tissue Bank 2023. [PMID: 36725733 DOI: 10.1007/s10561-023-10076-2] [Reference Citation Analysis]
2 Ghorbani F, Ghalandari B, Khajehmohammadi M, Bakhtiary N, Tolabi H, Sahranavard M, Fathi-karkan S, Nazar V, Hasan Niari Niar S, Armoon A, Ettelaei M, Tavakoli Banizi M, Collins MN. Photo-cross-linkable hyaluronic acid bioinks for bone and cartilage tissue engineering applications. International Materials Reviews 2023. [DOI: 10.1080/09506608.2023.2167559] [Reference Citation Analysis]
3 Cadamuro F, Nicotra F, Russo L. 3D printed tissue models: From hydrogels to biomedical applications. J Control Release 2023;354:726-45. [PMID: 36682728 DOI: 10.1016/j.jconrel.2023.01.048] [Reference Citation Analysis]
4 Randhawa A, Dutta SD, Ganguly K, Patel DK, Patil TV, Lim KT. Recent Advances in 3D Printing of Photocurable Polymers: Types, Mechanism, and Tissue Engineering Application. Macromol Biosci 2023;23:e2200278. [PMID: 36177687 DOI: 10.1002/mabi.202200278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Wu Y, Fuh J, Ozbolat IT. Bioprinting of other tissues and organs. 3D Bioprinting in Tissue and Organ Regeneration 2023. [DOI: 10.1016/b978-0-12-824291-9.00001-4] [Reference Citation Analysis]
6 Hosen MR, Goody PR, Zietzer A, Xiang X, Niepmann ST, Sedaghat A, Tiyerili V, Chennupati R, Moore JB 4th, Boon RA, Uchida S, Sinning JM, Zimmer S, Latz E, Werner N, Nickenig G, Jansen F. Circulating MicroRNA-122-5p Is Associated With a Lack of Improvement in Left Ventricular Function After Transcatheter Aortic Valve Replacement and Regulates Viability of Cardiomyocytes Through Extracellular Vesicles. Circulation 2022;146:1836-54. [PMID: 35862223 DOI: 10.1161/CIRCULATIONAHA.122.060258] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
7 Spedicati M, Ruocco G, Zoso A, Mortati L, Lapini A, Delledonne A, Divieto C, Romano V, Castaldo C, Di Meglio F, Nurzynska D, Carmagnola I, Chiono V. Biomimetic design of bioartificial scaffolds for the in vitro modelling of human cardiac fibrosis. Front Bioeng Biotechnol 2022;10:983872. [PMID: 36507252 DOI: 10.3389/fbioe.2022.983872] [Reference Citation Analysis]
8 Immohr MB, Dos Santos Adrego F, Teichert HL, Schmidt V, Sugimura Y, Bauer S, Barth M, Lichtenberg A, Akhyari P. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability. Biomed Mater 2022;18. [PMID: 36322974 DOI: 10.1088/1748-605X/ac9f91] [Reference Citation Analysis]
9 Turner ME, Bartoli‐leonard F, Aikawa E. Small particles with large impact: Insights into the unresolved roles of innate immunity in extracellular vesicle‐mediated cardiovascular calcification. Immunological Reviews. [DOI: 10.1111/imr.13134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Khanna A, Ayan B, Undieh AA, Yang YP, Huang NF. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration. Journal of Molecular and Cellular Cardiology 2022;169:13-27. [DOI: 10.1016/j.yjmcc.2022.04.017] [Reference Citation Analysis]
11 Bogdanova M, Zabirnyk A, Malashicheva A, Semenova D, Kvitting JE, Kaljusto ML, Perez MDM, Kostareva A, Stensløkken KO, Sullivan GJ, Rutkovskiy A, Vaage J. Models and Techniques to Study Aortic Valve Calcification in Vitro, ex Vivo and in Vivo. An Overview. Front Pharmacol 2022;13:835825. [PMID: 35721220 DOI: 10.3389/fphar.2022.835825] [Reference Citation Analysis]
12 Abdelbasset WK, Alrawaili SM, Osailan AM, Abdelmoniem Ibrahim A, Soliman GS, Abodonya AM. Polysaccharides, as biological macromolecule-based scaffolding systems in heart valve tissue engineering: a review. Cellulose. [DOI: 10.1007/s10570-022-04588-5] [Reference Citation Analysis]
13 Jafari A, Ajji Z, Mousavi A, Naghieh S, Bencherif SA, Savoji H. Latest Advances in 3D Bioprinting of Cardiac Tissues. Adv Materials Technologies. [DOI: 10.1002/admt.202101636] [Reference Citation Analysis]
14 Dayawansa NH, Baratchi S, Peter K. Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease. Front Cardiovasc Med 2022;9:783543. [DOI: 10.3389/fcvm.2022.783543] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Müller FJ, Fenton OS. Additive Manufacturing Approaches toward the Fabrication of Biomaterials. Adv Materials Inter 2022;9:2100670. [DOI: 10.1002/admi.202100670] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Barbugian F, Cadamuro F, Russo L. Chemical strategies for 3D printable biomaterials. Bioprinting 2022. [DOI: 10.1016/b978-0-323-85430-6.00002-9] [Reference Citation Analysis]
17 Araújo Passos LS, Becker-greene D, Aikawa E. Mechanisms of calcification in the aortic wall and aortic valve. Textbook of Arterial Stiffness and Pulsatile Hemodynamics in Health and Disease 2022. [DOI: 10.1016/b978-0-323-91391-1.00021-2] [Reference Citation Analysis]
18 Yan G, Liu Y, Xie M, Shi J, Qiao W, Dong N, Wq, Gy, Yl, Mx, Js, Wq, Nd. Experimental and computational models for tissue-engineered heart valves: a narrative review. Biomater Transl 2021;2:361-75. [PMID: 35837412 DOI: 10.12336/biomatertransl.2021.04.009] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 van der Ven CFT, Tibbitt MW, Conde J, van Mil A, Hjortnaes J, Doevendans PA, Sluijter JPG, Aikawa E, Langer RS. Controlled delivery of gold nanoparticle-coupled miRNA therapeutics via an injectable self-healing hydrogel. Nanoscale 2021;13:20451-61. [PMID: 34817483 DOI: 10.1039/d1nr04973a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
20 Tandon I, Ozkizilcik A, Ravishankar P, Balachandran K. Aortic valve cell microenvironment: Considerations for developing a valve-on-chip. Biophysics Rev 2021;2:041303. [DOI: 10.1063/5.0063608] [Reference Citation Analysis]
21 Kraler S, Blaser MC, Aikawa E, Camici GG, Lüscher TF. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J 2021:ehab757. [PMID: 34849696 DOI: 10.1093/eurheartj/ehab757] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
22 Uiterwijk M, van der Valk DC, van Vliet R, de Brouwer IJ, Hooijmans CR, Kluin J. Pulmonary valve tissue engineering strategies in large animal models. PLoS One 2021;16:e0258046. [PMID: 34610023 DOI: 10.1371/journal.pone.0258046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Hossain Rakin R, Kumar H, Rajeev A, Natale G, Menard F, Li ITS, Kim K. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication 2021;13. [PMID: 34507314 DOI: 10.1088/1758-5090/ac25cb] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
24 Scott AJ, Simon LR, Hutson HN, Porras AM, Masters KS. Engineering the aortic valve extracellular matrix through stages of development, aging, and disease. J Mol Cell Cardiol 2021;161:1-8. [PMID: 34339757 DOI: 10.1016/j.yjmcc.2021.07.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Nakidkina A, Kuzmina TI. Evaluation of viability indicators of bovine spermatozoa after exposure to silicon dimethylglycerolate using flow cytofluorimetry. Agrarian Bulletin of the 2021;209:53-60. [DOI: 10.32417/1997-4868-2021-209-06-53-60] [Reference Citation Analysis]
26 Büttner P, Feistner L, Lurz P, Thiele H, Hutcheson JD, Schlotter F. Dissecting Calcific Aortic Valve Disease-The Role, Etiology, and Drivers of Valvular Fibrosis. Front Cardiovasc Med 2021;8:660797. [PMID: 34041283 DOI: 10.3389/fcvm.2021.660797] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
27 Blaser MC, Kraler S, Lüscher TF, Aikawa E. Multi-Omics Approaches to Define Calcific Aortic Valve Disease Pathogenesis. Circ Res 2021;128:1371-97. [PMID: 33914608 DOI: 10.1161/CIRCRESAHA.120.317979] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
28 Alexa RL, Iovu H, Trica B, Zaharia C, Serafim A, Alexandrescu E, Radu IC, Vlasceanu G, Preda S, Ninciuleanu CM, Ianchis R. Assessment of Naturally Sourced Mineral Clays for the 3D Printing of Biopolymer-Based Nanocomposite Inks. Nanomaterials (Basel) 2021;11:703. [PMID: 33799601 DOI: 10.3390/nano11030703] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
29 Quadri F, Soman SS, Vijayavenkataraman S. Progress in cardiovascular bioprinting. Artif Organs 2021;45:652-64. [PMID: 33432583 DOI: 10.1111/aor.13913] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Bäck M, Michel JB. From organic and inorganic phosphates to valvular and vascular calcifications. Cardiovasc Res 2021;117:2016-29. [PMID: 33576771 DOI: 10.1093/cvr/cvab038] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
31 Shahzadi S, Ishtiaq I, Aslam K, Ali U, Mehak S, Khan S, Sajjad S, Babar M. 3D bioprinting–a step towards heart tissue regeneration. JABB 2021;8:1-4. [DOI: 10.15406/jabb.2021.08.00243] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Robert Langer and Mark Tibbitt answer questions about additive manufacturing. Nat Commun 2020;11:3994. [DOI: 10.1038/s41467-020-17724-1] [Reference Citation Analysis]
33 Azizi Machekposhti S, Movahed S, Narayan RJ. Physicochemical parameters that underlie inkjet printing for medical applications. Biophysics Rev 2020;1:011301. [DOI: 10.1063/5.0011924] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
34 Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, Zhuang D, Jiang H, Chen X, He Y, Huang S, Zhu P. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioact Mater 2021;6:1388-401. [PMID: 33210031 DOI: 10.1016/j.bioactmat.2020.10.021] [Cited by in Crossref: 40] [Cited by in F6Publishing: 47] [Article Influence: 13.3] [Reference Citation Analysis]
35 Aikawa E, Blaser MC. 2020 Jeffrey M. Hoeg Award Lecture: Calcifying Extracellular Vesicles as Building Blocks of Microcalcifications in Cardiovascular Disorders. Arterioscler Thromb Vasc Biol 2021;41:117-27. [PMID: 33115271 DOI: 10.1161/ATVBAHA.120.314704] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
36 Yong U, Lee S, Jung S, Jang J. Interdisciplinary approaches to advanced cardiovascular tissue engineering: ECM-based biomaterials, 3D bioprinting, and its assessment. Prog Biomed Eng 2020;2:042003. [DOI: 10.1088/2516-1091/abb211] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
37 Ravishankar P, Ozkizilcik A, Husain A, Balachandran K. Anisotropic Fiber-Reinforced Glycosaminoglycan Hydrogels for Heart Valve Tissue Engineering. Tissue Eng Part A 2021;27:513-25. [PMID: 32723024 DOI: 10.1089/ten.TEA.2020.0118] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
38 Lippi M, Stadiotti I, Pompilio G, Sommariva E. Human Cell Modeling for Cardiovascular Diseases. Int J Mol Sci 2020;21:E6388. [PMID: 32887493 DOI: 10.3390/ijms21176388] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
39 Armstrong AA, Alleyne AG, Wagoner Johnson AJ. 1D and 2D error assessment and correction for extrusion-based bioprinting using process sensing and control strategies. Biofabrication 2020;12:045023. [PMID: 32702687 DOI: 10.1088/1758-5090/aba8ee] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
40 Pedriali G, Morciano G, Patergnani S, Cimaglia P, Morelli C, Mikus E, Ferrari R, Gasbarro V, Giorgi C, Wieckowski MR, Pinton P. Aortic Valve Stenosis and Mitochondrial Dysfunctions: Clinical and Molecular Perspectives. Int J Mol Sci 2020;21:E4899. [PMID: 32664529 DOI: 10.3390/ijms21144899] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
41 Pakhomova C, Popov D, Maltsev E, Akhatov I, Pasko A. Software for Bioprinting. Int J Bioprint 2020;6:279. [PMID: 33088988 DOI: 10.18063/ijb.v6i3.279] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
42 Petta D, D'Amora U, Ambrosio L, Grijpma DW, Eglin D, D'Este M. Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication 2020;12:032001. [PMID: 32259809 DOI: 10.1088/1758-5090/ab8752] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 17.7] [Reference Citation Analysis]
43 Blaser MC, Buffolo F, Halu A, Schlotter F, Higashi H, Pantano L, Saddic LA, Atkins SK, Rogers MA, Pham T, Shvartz E, Sukhova GK, Monticone S, Camussi G, Body SC, Muehlschlegel JD, Singh SA, Aikawa M, Aikawa E. Conserved and Divergent Modulation of Calcification in Atherosclerosis and Aortic Valve Disease by Tissue Extracellular Vesicles.. [DOI: 10.1101/2020.04.02.022525] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
44 Gardin C, Ferroni L, Latremouille C, Chachques JC, Mitrečić D, Zavan B. Recent Applications of Three Dimensional Printing in Cardiovascular Medicine. Cells 2020;9:E742. [PMID: 32192232 DOI: 10.3390/cells9030742] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
45 Goody PR, Hosen MR, Christmann D, Niepmann ST, Zietzer A, Adam M, Bönner F, Zimmer S, Nickenig G, Jansen F. Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets. Arterioscler Thromb Vasc Biol 2020;40:885-900. [PMID: 32160774 DOI: 10.1161/ATVBAHA.119.313067] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 18.0] [Reference Citation Analysis]
46 Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From Shape to Function: The Next Step in Bioprinting. Adv Mater 2020;32:e1906423. [PMID: 32045053 DOI: 10.1002/adma.201906423] [Cited by in Crossref: 164] [Cited by in F6Publishing: 168] [Article Influence: 54.7] [Reference Citation Analysis]
47 Mubarak S, Dhamodharan D, Kale MB, Divakaran N, Senthil T, P S, Wu L, Wang J. A Novel Approach to Enhance Mechanical and Thermal Properties of SLA 3D Printed Structure by Incorporation of Metal-Metal Oxide Nanoparticles. Nanomaterials (Basel) 2020;10:E217. [PMID: 32012680 DOI: 10.3390/nano10020217] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
48 Cristache CM, Totu EE, Iorgulescu G, Pantazi A, Dorobantu D, Nechifor AC, Isildak I, Burlibasa M, Nechifor G, Enachescu M. Eighteen Months Follow-Up with Patient-Centered Outcomes Assessment of Complete Dentures Manufactured Using a Hybrid Nanocomposite and Additive CAD/CAM Protocol. J Clin Med 2020;9:E324. [PMID: 31979345 DOI: 10.3390/jcm9020324] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
49 Rogers MA, Aikawa E. Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery. Nat Rev Cardiol. 2019;16:261-274. [PMID: 30531869 DOI: 10.1038/s41569-018-0123-8] [Cited by in Crossref: 79] [Cited by in F6Publishing: 88] [Article Influence: 26.3] [Reference Citation Analysis]
50 Berry DB, Yu C, Chen S. Biofabricated three-dimensional tissue models. Principles of Tissue Engineering 2020. [DOI: 10.1016/b978-0-12-818422-6.00077-0] [Reference Citation Analysis]
51 Blaser MC, Atkins SK, Aikawa E. Tissue Engineering to Study and Treat Cardiovascular Calcification. Tissue-Engineered Vascular Grafts 2020. [DOI: 10.1007/978-3-319-71530-8_16-1] [Reference Citation Analysis]
52 Mubarak S, Dhamodharan D, Divakaran N, Kale MB, Senthil T, Wu L, Wang J. Enhanced Mechanical and Thermal Properties of Stereolithography 3D Printed Structures by the Effects of Incorporated Controllably Annealed Anatase TiO2 Nanoparticles. Nanomaterials (Basel) 2020;10:E79. [PMID: 31906295 DOI: 10.3390/nano10010079] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
53 Blaser MC, Atkins SK, Aikawa E. Tissue Engineering to Study and Treat Cardiovascular Calcification. Tissue-Engineered Vascular Grafts 2020. [DOI: 10.1007/978-3-030-05336-9_16] [Reference Citation Analysis]
54 Kristen M, Ainsworth MJ, Chirico N, van der Ven CFT, Doevendans PA, Sluijter JPG, Malda J, van Mil A, Castilho M. Fiber Scaffold Patterning for Mending Hearts: 3D Organization Bringing the Next Step. Adv Healthc Mater 2020;9:e1900775. [PMID: 31603288 DOI: 10.1002/adhm.201900775] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
55 Wang X, Xu P, Han R, Ren J, Li L, Han N, Xing F, Zhu J. A review on the mechanical properties for thin film and block structure characterised by using nanoscratch test. Nanotechnology Reviews 2019;8:628-44. [DOI: 10.1515/ntrev-2019-0055] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
56 Maxson EL, Young MD, Noble C, Go JL, Heidari B, Khorramirouz R, Morse DW, Lerman A. In vivo remodeling of a 3D-Bioprinted tissue engineered heart valve scaffold. Bioprinting 2019;16:e00059. [DOI: 10.1016/j.bprint.2019.e00059] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
57 Fenton OS, Paolini M, Andresen JL, Müller FJ, Langer R. Outlooks on Three-Dimensional Printing for Ocular Biomaterials Research. J Ocul Pharmacol Ther 2020;36:7-17. [PMID: 31211652 DOI: 10.1089/jop.2018.0142] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
58 Goto S, Rogers MA, Blaser MC, Higashi H, Lee LH, Schlotter F, Body SC, Aikawa M, Singh SA, Aikawa E. Standardization of Human Calcific Aortic Valve Disease in vitro Modeling Reveals Passage-Dependent Calcification. Front Cardiovasc Med 2019;6:49. [PMID: 31041314 DOI: 10.3389/fcvm.2019.00049] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
59 Vashistha R, Kumar P, Dangi AK, Sharma N, Chhabra D, Shukla P. Quest for cardiovascular interventions: precise modeling and 3D printing of heart valves. J Biol Eng 2019;13:12. [PMID: 30774709 DOI: 10.1186/s13036-018-0132-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
60 Sachdev A, Raj R, Matai I. 3D Printing for In vitro and In vivo Disease Models. 3D Printing Technology in Nanomedicine 2019. [DOI: 10.1016/b978-0-12-815890-6.00007-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
61 Ho D, Wang P, Kee T. Artificial intelligence in nanomedicine. Nanoscale Horiz 2019;4:365-77. [DOI: 10.1039/c8nh00233a] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 12.0] [Reference Citation Analysis]
62 Mela P, Hinderer S, Kandail HS, Bouten CV, Smits AI. Tissue-engineered heart valves. Principles of Heart Valve Engineering 2019. [DOI: 10.1016/b978-0-12-814661-3.00006-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
63 Cetnar A, Tomov M, Theus A, Lima B, Vaidya A, Serpooshan V. 3D Bioprinting in Clinical Cardiovascular Medicine. 3D Bioprinting in Medicine 2019. [DOI: 10.1007/978-3-030-23906-0_5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]