BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mosier-Boss PA. Review of SERS Substrates for Chemical Sensing. Nanomaterials (Basel) 2017;7:E142. [PMID: 28594385 DOI: 10.3390/nano7060142] [Cited by in Crossref: 256] [Cited by in F6Publishing: 139] [Article Influence: 51.2] [Reference Citation Analysis]
Number Citing Articles
1 Rice D, Mouras R, Gleeson M, Liu N, Tofail SAM, Soulimane T, Silien C. APTES Duality and Nanopore Seed Regulation in Homogeneous and Nanoscale-Controlled Reduction of Ag Shell on SiO2 Microparticle for Quantifiable Single Particle SERS. ACS Omega 2018;3:13028-35. [PMID: 31458023 DOI: 10.1021/acsomega.8b01247] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
2 Petry R, Oliveira NC, Alves AC, Filho AGS, Martinez DST, Hwang G, Sousa FA, Paula AJ. Nanomaterials Properties of Environmental Interest and How to Assess Them. Nanomaterials Applications for Environmental Matrices. Elsevier; 2019. pp. 45-105. [DOI: 10.1016/b978-0-12-814829-7.00002-1] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
3 Bodelón G, Montes-García V, Pérez-Juste J, Pastoriza-Santos I. Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing. Front Cell Infect Microbiol 2018;8:143. [PMID: 29868499 DOI: 10.3389/fcimb.2018.00143] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
4 Silina YE, Semenova D, Spiridonov BA. One-step encapsulation, storage and controlled release of low molecular weight organic compounds via electroplated nanoparticles. Analyst 2019;144:5677-81. [DOI: 10.1039/c9an01246j] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Verma AK, Soni RK. Ultrasensitive surface‐enhanced Raman spectroscopy detection of explosive molecules with multibranched silver nanostructures. J Raman Spectroscopy. [DOI: 10.1002/jrs.6294] [Reference Citation Analysis]
6 Li H, Zhao N, Wang Y, Zou R, Yang Z, Zhu C, Wang M, Yu H. Wafer-scale silver nanoislands with ∼5 nm interstitial gaps for surface-enhanced Raman scattering. Opt Mater Express 2020;10:3359. [DOI: 10.1364/ome.411419] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Kovalets NP, Kozhina EP, Razumovskaya IV, Bedin SA, Piryazev AA, Grigoriev YV, Naumov AV. Toward single-molecule surface-enhanced Raman scattering with novel type of metasurfaces synthesized by crack-stretching of metallized track-etched membranes. J Chem Phys 2022;156:034902. [DOI: 10.1063/5.0078451] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ko TS, Liu HY, Shieh J, Shieh, Chen SH, Chen YL, Lin ET. Using Si/MoS2 Core-Shell Nanopillar Arrays Enhances SERS Signal. Nanomaterials (Basel) 2021;11:733. [PMID: 33803940 DOI: 10.3390/nano11030733] [Reference Citation Analysis]
9 Hermann D, Lilek D, Daffert C, Fritz I, Weinberger S, Rumpler V, Herbinger B, Prohaska K. In situ based surface-enhanced Raman spectroscopy (SERS) for the fast and reproducible identification of PHB producers in cyanobacterial cultures. Analyst 2020;145:5242-51. [DOI: 10.1039/d0an00969e] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Nsibande S, Montaseri H, Forbes P. Advances in the application of nanomaterial-based sensors for detection of polycyclic aromatic hydrocarbons in aquatic systems. TrAC Trends in Analytical Chemistry 2019;115:52-69. [DOI: 10.1016/j.trac.2019.03.029] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 5.7] [Reference Citation Analysis]
11 Mikac L, Kovačević E, Ukić Š, Raić M, Jurkin T, Marić I, Gotić M, Ivanda M. Detection of multi-class pesticide residues with surface-enhanced Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2021;252:119478. [PMID: 33524818 DOI: 10.1016/j.saa.2021.119478] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zheng W, Tian W, Liu X, Zhang Q, Zong C, Lai J, Zhao W. In situ photochemical deposition of Ag nanoparticles on polyester fiber membranes as flexible SERS substrates for sensitive detection of sodium saccharin in soft drinks. Microchemical Journal 2021;164:106003. [DOI: 10.1016/j.microc.2021.106003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
13 Caroleo F, Magna G, Naitana ML, Di Zazzo L, Martini R, Pizzoli F, Muduganti M, Lvova L, Mandoj F, Nardis S, Stefanelli M, Di Natale C, Paolesse R. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors (Basel) 2022;22:2649. [PMID: 35408267 DOI: 10.3390/s22072649] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Beketov GV, Shynkarenko OV, Yukhymchuk VO. Optical arrangement for surface plasmon-assisted directional enhanced Raman scattering spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2019;219:488-95. [PMID: 31077952 DOI: 10.1016/j.saa.2019.04.039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Sha X, Han S, Fang G, Li N, Lin D, Hasi W. A novel suitable TLC-SERS assembly strategy for detection of Rhodamine B and Sudan I in chili oil. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109040] [Reference Citation Analysis]
16 Crotti G, Schirato A, Proietti Zaccaria R, Della Valle G. On the limits of quasi-static theory in plasmonic nanostructures. J Opt 2021;24:015001. [DOI: 10.1088/2040-8986/ac3e00] [Reference Citation Analysis]
17 Shinki, Sarkar S. Daily-Life Candidates as Flexible SERS Substrates for Pesticide Detection: a Comparative Study. Plasmonics. [DOI: 10.1007/s11468-022-01618-7] [Reference Citation Analysis]
18 Merlin JPJ, Li X. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Front Genet 2021;12:817974. [PMID: 35069707 DOI: 10.3389/fgene.2021.817974] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Visaveliya NR, Mazetyte‐stasinskiene R, Köhler JM. Stationary, Continuous, and Sequential Surface‐Enhanced Raman Scattering Sensing Based on the Nanoscale and Microscale Polymer‐Metal Composite Sensor Particles through Microfluidics: A Review. Advanced Optical Materials 2022;10:2102757. [DOI: 10.1002/adom.202102757] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Pal P, Bonyár A, Veres M, Himics L, Balázs L, Juhász L, Csarnovics I. A generalized exponential relationship between the surface-enhanced Raman scattering (SERS) efficiency of gold/silver nanoisland arrangements and their non-dimensional interparticle distance/particle diameter ratio. Sensors and Actuators A: Physical 2020;314:112225. [DOI: 10.1016/j.sna.2020.112225] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
21 Wang T, Zhou J, Wang Y. Simple, Low-Cost Fabrication of Highly Uniform and Reproducible SERS Substrates Composed of Ag⁻Pt Nanoparticles. Nanomaterials (Basel) 2018;8:E331. [PMID: 29762487 DOI: 10.3390/nano8050331] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. A Review on Surface-Enhanced Raman Scattering. Biosensors (Basel) 2019;9:E57. [PMID: 30999661 DOI: 10.3390/bios9020057] [Cited by in Crossref: 181] [Cited by in F6Publishing: 91] [Article Influence: 60.3] [Reference Citation Analysis]
23 Weng G, Feng Y, Zhao J, Li J, Zhu J, Zhao J. Size dependent SERS activity of Ag triangular nanoplates on different substrates: Glass vs paper. Applied Surface Science 2019;478:275-83. [DOI: 10.1016/j.apsusc.2019.01.142] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 5.7] [Reference Citation Analysis]
24 Jin C, Chen J, Du Z, Liu C, Liu F, Hu J, Han M. Two orders of magnitude extra SERS enhancement on silver nanoparticle-based substrate induced by laser irradiation in nitrogen ambient. Spectrochim Acta A Mol Biomol Spectrosc 2022;265:120372. [PMID: 34530198 DOI: 10.1016/j.saa.2021.120372] [Reference Citation Analysis]
25 Sinha RK. An Inexpensive Raman, Spectroscopy Setup for Raman, Polarized Raman, and Surface Enhanced Raman, Spectroscopy. Instrum Exp Tech 2021;64:840-7. [DOI: 10.1134/s002044122106018x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Faris RA, Mahdi ZF, Husein MDA. Immobilised Gold Nanostructures on Printing Paper for Lable-Free Surface-enhanced Raman Spectroscopy. IOP Conf Ser : Mater Sci Eng 2020;871:012019. [DOI: 10.1088/1757-899x/871/1/012019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Nisticò R, Rivolo P, Novara C, Giorgis F. New branched flower-like Ag nanostructures for SERS analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;578:123600. [DOI: 10.1016/j.colsurfa.2019.123600] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
28 Zámbó D, Szekrényes DP, Pothorszky S, Nagy N, Deák A. SERS Activity of Reporter-Particle-Loaded Single Plasmonic Nanovoids. J Phys Chem C 2018;122:23683-90. [DOI: 10.1021/acs.jpcc.8b06716] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
29 Do PQT, Huong VT, Phuong NTT, Nguyen T, Ta HKT, Ju H, Phan TB, Phung V, Trinh KTL, Tran NHT. The highly sensitive determination of serotonin by using gold nanoparticles (Au NPs) with a localized surface plasmon resonance (LSPR) absorption wavelength in the visible region. RSC Adv 2020;10:30858-69. [DOI: 10.1039/d0ra05271j] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Deidda R, Avohou HT, Dumont E, Hubert C, Hubert P, De Bleye C, Ziemons É. Application of the analytical quality by design principles to the development of a qualitative surface‐enhanced Raman scattering method: A proof of concept. J Raman Spectroscopy 2022;53:20-32. [DOI: 10.1002/jrs.6249] [Reference Citation Analysis]
31 Vásquez L, Davis A, Gatto F, Ngoc An M, Drago F, Pompa PP, Athanassiou A, Fragouli D. Multifunctional PDMS polyHIPE filters for oil-water separation and antibacterial activity. Separation and Purification Technology 2021;255:117748. [DOI: 10.1016/j.seppur.2020.117748] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 11.0] [Reference Citation Analysis]
32 Chen W, Cheng Y, Yang M, Jeng R, Liu T, Wang J, Wang Y. Mesoporous Silica Nanospheres Decorated by Ag–Nanoparticle Arrays with 5 nm Interparticle Gap Exhibit Insignificant Hot-Spot Raman Enhancing Effect. J Phys Chem C 2019;123:18528-35. [DOI: 10.1021/acs.jpcc.9b04074] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
33 Poonia M, Küster T, Bothun GD. Organic Anion Detection with Functionalized SERS Substrates via Coupled Electrokinetic Preconcentration, Analyte Capture, and Charge Transfer. ACS Appl Mater Interfaces 2022. [PMID: 35522999 DOI: 10.1021/acsami.2c02934] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zhong F, Wu Z, Guo J, Jia D. Porous Silicon Photonic Crystals Coated with Ag Nanoparticles as Efficient Substrates for Detecting Trace Explosives Using SERS. Nanomaterials (Basel) 2018;8:E872. [PMID: 30360577 DOI: 10.3390/nano8110872] [Cited by in Crossref: 25] [Cited by in F6Publishing: 9] [Article Influence: 6.3] [Reference Citation Analysis]
35 Yadav S, Sadique MA, Ranjan P, Kumar N, Singhal A, Srivastava AK, Khan R. SERS Based Lateral Flow Immunoassay for Point-of-Care Detection of SARS-CoV-2 in Clinical Samples. ACS Appl Bio Mater 2021;4:2974-95. [DOI: 10.1021/acsabm.1c00102] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
36 Liu Y, Luo F. Spatial Raman mapping investigation of SERS performance related to localized surface plasmons. Nano Res 2020;13:138-44. [DOI: 10.1007/s12274-019-2586-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
37 Ogundare SA, van Zyl WE. A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose 2019;26:6489-528. [DOI: 10.1007/s10570-019-02580-0] [Cited by in Crossref: 42] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
38 Liu Y, Luo F. Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering. Nano Res 2019;12:2788-95. [DOI: 10.1007/s12274-019-2514-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
39 Lafuente M, Ruiz-rincón S, Mallada R, Cea P, Pilar Pina M. Towards the reproducible fabrication of homogeneous SERS substrates by Langmuir-Schaefer technique: A low cost and scalable approach for practical SERS based sensing applications. Applied Surface Science 2020;506:144663. [DOI: 10.1016/j.apsusc.2019.144663] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
40 Rabiee N, Bagherzadeh M, Ghasemi A, Zare H, Ahmadi S, Fatahi Y, Dinarvand R, Rabiee M, Ramakrishna S, Shokouhimehr M, Varma RS. Point-of-Use Rapid Detection of SARS-CoV-2: Nanotechnology-Enabled Solutions for the COVID-19 Pandemic. Int J Mol Sci 2020;21:E5126. [PMID: 32698479 DOI: 10.3390/ijms21145126] [Cited by in Crossref: 36] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
41 Okeil S, Schneider JJ. Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS. Beilstein J Nanotechnol 2018;9:2813-31. [PMID: 30498654 DOI: 10.3762/bjnano.9.263] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
42 Muneer S, Sarfo DK, Ayoko GA, Islam N, Izake EL. Gold-Deposited Nickel Foam as Recyclable Plasmonic Sensor for Therapeutic Drug Monitoring in Blood by Surface-Enhanced Raman Spectroscopy. Nanomaterials (Basel) 2020;10:E1756. [PMID: 32899949 DOI: 10.3390/nano10091756] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Han Y, Wang H, Qiang L, Gao Y, Li Q, Pang J, Liu H, Han L, Wu Y, Zhang Y. Fabrication of a uniform Au nanodot array/monolayer graphene hybrid structure for high-performance surface-enhanced Raman spectroscopy. J Mater Sci 2020;55:591-602. [DOI: 10.1007/s10853-019-04036-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
44 Wang P, Sun Y, Li X, Wang L, Xu Y, He L, Li G. Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: A review. Anal Chim Acta 2021;1157:338279. [PMID: 33832584 DOI: 10.1016/j.aca.2021.338279] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
45 Moisoiu V, Badarinza M, Stefancu A, Iancu SD, Serban O, Leopold N, Fodor D. Combining surface-enhanced Raman scattering (SERS) of saliva and two-dimensional shear wave elastography (2D-SWE) of the parotid glands in the diagnosis of Sjögren's syndrome. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020;235:118267. [DOI: 10.1016/j.saa.2020.118267] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
46 Sagandykova GN, Pomastowski PP, Buszewski B. Multi-instrumental approach to unravel molecular mechanisms of natural bioactive compounds: Case studies for flavonoids. TrAC Trends in Analytical Chemistry 2020;126:115865. [DOI: 10.1016/j.trac.2020.115865] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Park J, Thomasson JA, Fernando S, Lee KM, Herrman TJ. Complexes Formed by Hydrophobic Interaction between Ag-Nanospheres and Adsorbents for the Detection of Methyl Salicylate VOC. Nanomaterials (Basel) 2019;9:E1621. [PMID: 31731662 DOI: 10.3390/nano9111621] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
48 Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021;1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Reference Citation Analysis]
49 Jiang T, Goel P, Zhao H, Ma R, Zhu L, Liu X, Tang L. Internal Structure Tailoring in 3D Nanoplasmonic Metasurface for Surface‐Enhanced Raman Spectroscopy. Part Part Syst Charact 2019;37:1900345. [DOI: 10.1002/ppsc.201900345] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
50 Nguyen THT, Nguyen TMA, Sai CD, Le THY, Anh Tran TN, Bach TC, Le VV, Pham NH, Ngac AB, Nguyen VT, Tran TH. Efficient surface enhanced Raman scattering substrates based on complex gold nanostructures formed by annealing sputtered gold thin films. Optical Materials 2021;121:111488. [DOI: 10.1016/j.optmat.2021.111488] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
51 Mosier-Boss PA. Review on SERS of Bacteria. Biosensors (Basel) 2017;7:E51. [PMID: 29137201 DOI: 10.3390/bios7040051] [Cited by in Crossref: 46] [Cited by in F6Publishing: 27] [Article Influence: 9.2] [Reference Citation Analysis]
52 Deng ZY, Chen KL, Wu CH. Improving the SERS signals of biomolecules using a stacked biochip containing Fe2O3/Au nanoparticles and a DC magnetic field. Sci Rep 2019;9:9566. [PMID: 31266975 DOI: 10.1038/s41598-019-45879-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
53 Gong X, Liao X, Li Y, Cao H, Zhao Y, Li H, Cassidy DP. Sensitive detection of polycyclic aromatic hydrocarbons with gold colloid coupled chloride ion SERS sensor. Analyst 2019;144:6698-705. [DOI: 10.1039/c9an01540j] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
54 Capaccio A, Sasso A, Rusciano G. A simple and reliable approach for the fabrication of nanoporous silver patterns for surface-enhanced Raman spectroscopy applications. Sci Rep 2021;11:22295. [PMID: 34785690 DOI: 10.1038/s41598-021-01727-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Zhang R, Zhong Q, Liu Y, Ji J, Liu B. Monodispersed silver-gold nanorods controllable etching for ultrasensitive SERS detection of hydrogen peroxide-involved metabolites. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123382] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
56 Loyola-leyva A, Hernández-vidales K, Loyola-rodríguez JP, González FJ. Raman spectroscopy applications for the diagnosis and follow-up of type 2 diabetes mellitus. A brief review. BSI 2020;9:119-40. [DOI: 10.3233/bsi-200207] [Reference Citation Analysis]
57 Bandarenka HV, Khinevich NV, Burko AA, Redko SV, Zavatski SA, Shapel UA, Mamatkulov KZ, Vorobyeva MY, Arzumanyan GM. 3D Silver Dendrites for Single‐molecule Imaging by Surface‐enhanced Raman Spectroscopy. ChemNanoMat 2021;7:141-9. [DOI: 10.1002/cnma.202000521] [Reference Citation Analysis]
58 Xue X, Chen L, Wang C, Zhao C, Wang H, Ma N, Li J, Qiao Y, Chang L, Zhao B. Highly sensitive SERS behavior and wavelength-dependence charge transfer effect on the PS/Ag/ZIF-8 substrate. Spectrochim Acta A Mol Biomol Spectrosc 2021;247:119126. [PMID: 33160136 DOI: 10.1016/j.saa.2020.119126] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Zalaffi MS, Karimian N, Ugo P. Review—Electrochemical and SERS Sensors for Cultural Heritage Diagnostics and Conservation: Recent Advances and Prospects. J Electrochem Soc 2020;167:037548. [DOI: 10.1149/1945-7111/ab67ac] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
60 Jose PPA, Kala MS, Joseph AV, Kalarikkal N, Thomas S. Reduced graphene oxide/silver nanohybrid as a multifunctional material for antibacterial, anticancer, and SERS applications. Appl Phys A 2020;126. [DOI: 10.1007/s00339-019-3237-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
61 Osminkina LA, Žukovskaja O, Agafilushkina SN, Kaniukov E, Stranik O, Gonchar KA, Yakimchuk D, Bundyukova V, Chermoshentsev DA, Dyakov SA, Gippius NA, Weber K, Popp J, Cialla–may D, Sivakov V. Gold nanoflowers grown in a porous Si/SiO2 matrix: The fabrication process and plasmonic properties. Applied Surface Science 2020;507:144989. [DOI: 10.1016/j.apsusc.2019.144989] [Cited by in Crossref: 11] [Article Influence: 5.5] [Reference Citation Analysis]
62 Martinez L, He L. Detection of Mycotoxins in Food Using Surface-Enhanced Raman Spectroscopy: A Review. ACS Appl Bio Mater 2021;4:295-310. [PMID: 35014285 DOI: 10.1021/acsabm.0c01349] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
63 Becucci M, Bracciali M, Ghini G, Lofrumento C, Pietraperzia G, Ricci M, Tognaccini L, Trigari S, Gellini C, Feis A. Silver nanowires as infrared-active materials for surface-enhanced Raman scattering. Nanoscale 2018;10:9329-37. [PMID: 29738000 DOI: 10.1039/c8nr00537k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
64 Bilgin B, Yanik C, Torun H, Onbasli MC. Genetic Algorithm-Driven Surface-Enhanced Raman Spectroscopy Substrate Optimization. Nanomaterials (Basel) 2021;11:2905. [PMID: 34835670 DOI: 10.3390/nano11112905] [Reference Citation Analysis]
65 Díaz-Núñez P, García-Martín JM, González MU, González-Arrabal R, Rivera A, Alonso-González P, Martín-Sánchez J, Taboada-Gutiérrez J, González-Rubio G, Guerrero-Martínez A, Bañares L, Peña-Rodríguez O. On the Large Near-Field Enhancement on Nanocolumnar Gold Substrates. Sci Rep 2019;9:13933. [PMID: 31558753 DOI: 10.1038/s41598-019-50392-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
66 Wang P, Sun Y, Li X, Wang L, Xu Y, Li G. Recent Advances in Metal Organic Frameworks Based Surface Enhanced Raman Scattering Substrates: Synthesis and Applications. Molecules 2021;26:E209. [PMID: 33401623 DOI: 10.3390/molecules26010209] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Moldovan R, Iacob BC, Farcău C, Bodoki E, Oprean R. Strategies for SERS Detection of Organochlorine Pesticides. Nanomaterials (Basel) 2021;11:304. [PMID: 33503937 DOI: 10.3390/nano11020304] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
68 Fu F, Yang B, Hu X, Tang H, Zhang Y, Xu X, Zhang Y, Touhid SSB, Liu X, Zhu Y, Zhou J, Yao J. Biomimetic synthesis of 3D Au-decorated chitosan nanocomposite for sensitive and reliable SERS detection. Chemical Engineering Journal 2020;392:123693. [DOI: 10.1016/j.cej.2019.123693] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
69 Lee Y, Kim E, Park Y, Kim J, Ryu W, Rho J, Kim K. Photodeposited metal-semiconductor nanocomposites and their applications. Journal of Materiomics 2018;4:83-94. [DOI: 10.1016/j.jmat.2018.01.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
70 Hsiao M, Chen S, Li J, Hsiao P, Chen C. Unveiling the detection kinetics and quantitative analysis of colorimetric sensing for sodium salts using surface-modified Au-nanoparticle probes. Nanoscale Adv . [DOI: 10.1039/d2na00211f] [Reference Citation Analysis]
71 Bocsa CD, Moisoiu V, Stefancu A, Leopold LF, Leopold N, Fodor D. Knee osteoarthritis grading by resonant Raman and surface-enhanced Raman scattering (SERS) analysis of synovial fluid. Nanomedicine 2019;20:102012. [PMID: 31085345 DOI: 10.1016/j.nano.2019.04.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
72 Mi F, Hu C, Wang Y, Wang L, Peng F, Geng P, Guan M. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review. Anal Bioanal Chem. [DOI: 10.1007/s00216-021-03872-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
73 Yu H, Lyu Q, Chen X, Guo D, He D, Jia X, Han L, Xiao W. Nylon membranes modified by gold nanoparticles as surface-enhanced Raman spectroscopy substrates for several pesticides detection. RSC Adv 2021;11:24183-9. [PMID: 35479016 DOI: 10.1039/d1ra03490a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
74 Grell M, Dincer C, Le T, Lauri A, Nunez Bajo E, Kasimatis M, Barandun G, Maier SA, Cass AEG, Güder F. Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting. Adv Funct Mater 2019;29:1804798. [PMID: 32733177 DOI: 10.1002/adfm.201804798] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
75 Schreiber B, Gkogkou D, Dedelaite L, Kerbusch J, Hübner R, Sheremet E, Zahn DRT, Ramanavicius A, Facsko S, Rodriguez RD. Large-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS. RSC Adv 2018;8:22569-76. [DOI: 10.1039/c8ra04031a] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
76 Ioka M, Toyotama A, Yamaguchi M, Nozawa J, Uda S, Okuzono T, Yoshimura M, Yamanaka J. Crystallization of charged gold particles mediated by nonadsorbing like-charged polyelectrolyte. J Chem Phys 2021;154:234901. [PMID: 34241247 DOI: 10.1063/5.0052339] [Reference Citation Analysis]
77 Wu H, Niu G, Ren W, Jiang L, Zhao J, Quan Y, Ren MX, Yu W, Zhang Y, Cao X, Liu Y, An R, Dai L, Wang Z, Zhao L, Xie Z, Zhao G. Highly sensitive label-free detection of analytes at different scales using uniform graphene-nanopyramids hybrid SERS system. Sensors and Actuators B: Chemical 2022;354:131205. [DOI: 10.1016/j.snb.2021.131205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Li H, Wang X, Wei S, Zhao C, Song X, Xu K, Li J, Pang B, Wang J. Applications of hybridization chain reaction optical detection incorporating nanomaterials: A review. Anal Chim Acta 2022;1190:338930. [PMID: 34857127 DOI: 10.1016/j.aca.2021.338930] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
79 Gebavi H, Gašparić V, Risović D, Baran N, Albrycht PH, Ivanda M. Features and advantages of flexible silicon nanowires for SERS applications. Beilstein J Nanotechnol 2019;10:725-34. [PMID: 30931214 DOI: 10.3762/bjnano.10.72] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
80 Hahm E, Kang EJ, Pham XH, Jeong D, Jeong DH, Jung S, Jun BH. Mono-6-Deoxy-6-Aminopropylamino-β-Cyclodextrin on Ag-Embedded SiO2 Nanoparticle as a Selectively Capturing Ligand to Flavonoids. Nanomaterials (Basel) 2019;9:E1349. [PMID: 31547075 DOI: 10.3390/nano9101349] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
81 Fitzek H, Sattelkow J, Plank H, Pölt P. Accurate Near-Field Simulations of the Real Substrate Geometry—A Powerful Tool for Understanding Surface-Enhanced Raman Spectroscopy. J Phys Chem C 2018;122:6826-34. [DOI: 10.1021/acs.jpcc.8b00594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
82 Tahghighi M, Janner D, Ignés-Mullol J. Optimizing Gold Nanoparticle Size and Shape for the Fabrication of SERS Substrates by Means of the Langmuir-Blodgett Technique. Nanomaterials (Basel) 2020;10:E2264. [PMID: 33207593 DOI: 10.3390/nano10112264] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
83 Saylan Y, Akgönüllü S, Denizli A. Plasmonic Sensors for Monitoring Biological and Chemical Threat Agents. Biosensors (Basel) 2020;10:E142. [PMID: 33076308 DOI: 10.3390/bios10100142] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
84 Singh N, Kumar P, Riaz U. Applications of near infrared and surface enhanced Raman scattering techniques in tumor imaging: A short review. Spectrochim Acta A Mol Biomol Spectrosc 2019;222:117279. [PMID: 31234091 DOI: 10.1016/j.saa.2019.117279] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
85 Masár M, Troška P, Hradski J, Talian I. Microchip isotachophoresis coupled to surface-enhanced Raman spectroscopy for pharmaceutical analysis. Mikrochim Acta 2020;187:448. [PMID: 32676809 DOI: 10.1007/s00604-020-04436-y] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
86 Babich E, Scherbak S, Asonkeng F, Maurer T, Lipovskii A. Hot spot statistics and SERS performance of self-assembled silver nanoisland films. Opt Mater Express 2019;9:4090. [DOI: 10.1364/ome.9.004090] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
87 Hoang LT, Pham HV, Nguyen MTT. Investigation of the Factors Influencing the Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles. Journal of Elec Materi 2020;49:1864-71. [DOI: 10.1007/s11664-019-07870-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Siebe HS, Chen Q, Li X, Xu Y, Browne WR, Bell SEJ. Filter paper based SERS substrate for the direct detection of analytes in complex matrices. Analyst 2021;146:1281-8. [PMID: 33426548 DOI: 10.1039/d0an02103b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
89 Liu Y, Zhu W, Hu J, Shen A. Recent advances in plasmonic Prussian blue-based SERS nanotags for biological application. Nanoscale Adv 2021;3:6568-79. [DOI: 10.1039/d1na00464f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
90 Breuch R, Klein D, Moers C, Siefke E, Wickleder C, Kaul P. Development of Gold Nanoparticle-Based SERS Substrates on TiO2-Coating to Reduce the Coffee Ring Effect. Nanomaterials 2022;12:860. [DOI: 10.3390/nano12050860] [Reference Citation Analysis]
91 Li C, Peng Y, Wang H, Liang A, Jiang Z. A nanosol SERS method for quantitative analysis of trace potassium based on aptamer recognition and silver nanorod catalysis of Ag(I)-glucose reaction. Sensors and Actuators B: Chemical 2019;281:53-9. [DOI: 10.1016/j.snb.2018.10.079] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
92 Volochanskyi O, Švecová M, Bartůněk V, Prokopec V. Electroless deposition via galvanic displacement as a simple way for the preparation of silver, gold, and copper SERS-active substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;616:126310. [DOI: 10.1016/j.colsurfa.2021.126310] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
93 Choi JH, Lee JH, Choi JW. Applications of Bionano Sensor for Extracellular Vesicles Analysis. Materials (Basel) 2020;13:E3677. [PMID: 32825537 DOI: 10.3390/ma13173677] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
94 Çelik Y, Kurt A. Three dimensional porous Expanded Graphite/Silver Nanoparticles nanocomposite platform as a SERS substrate. Applied Surface Science 2021;568:150946. [DOI: 10.1016/j.apsusc.2021.150946] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
95 Liu X, Yang S, Lyu X, Liu S, Wang Y, Li Y, Wang B, Chen W, Wang W, Guo J, Ma X. Instant Preparation of Ultraclean Gold Nanothorns under Ambient Conditions for SERS Kit-Enabled Mobile Diagnosis. Anal Chem 2021;93:16628-37. [PMID: 34855357 DOI: 10.1021/acs.analchem.1c04099] [Reference Citation Analysis]
96 Si Y, Xu L, Deng T, Zheng J, Li J. Catalytic Hairpin Self-Assembly-Based SERS Sensor Array for the Simultaneous Measurement of Multiple Cancer-Associated miRNAs. ACS Sens 2020;5:4009-16. [PMID: 33284591 DOI: 10.1021/acssensors.0c01876] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 9.5] [Reference Citation Analysis]
97 Panarin AY, Abakshonok AV, Mojzes P, Terekhov SN. Plasmonic Structures Based on Hydroxyapatite/Silver Nanocomposite for Surface-Enhanced Raman Spectroscopy. J Appl Spectrosc 2021;88:980-6. [DOI: 10.1007/s10812-021-01269-2] [Reference Citation Analysis]
98 Lian X, Sun H, Lv Y, Wang G. Room temperature self-assembled Ag nanoparticles/Mo-37.5% Ag film as efficient flexible SERS substrate. Materials Letters 2020;275:128164. [DOI: 10.1016/j.matlet.2020.128164] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
99 Ralbovsky NM, Lednev IK. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem Soc Rev 2020;49:7428-53. [DOI: 10.1039/d0cs01019g] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 11.5] [Reference Citation Analysis]
100 Dallari C, Credi C, Lenci E, Trabocchi A, Cicchi R, Pavone FS. Nanostars—decorated microfluidic sensors for surface enhanced Raman scattering targeting of biomolecules. J Phys Photonics 2020;2:024008. [DOI: 10.1088/2515-7647/ab869a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
101 Hariharan A, Kurnoothala R, Chinthakayala SK, Vishnubhatla KC, Vadlamudi P. SERS of Dopamine: Computational and experimental studies. Spectrochim Acta A Mol Biomol Spectrosc 2021;260:119962. [PMID: 34044193 DOI: 10.1016/j.saa.2021.119962] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Serebrennikova KV, Hendrickson OD, Zvereva EA, Popravko DS, Zherdev AV, Xu C, Dzantiev BB. A Comparative Study of Approaches to Improve the Sensitivity of Lateral Flow Immunoassay of the Antibiotic Lincomycin. Biosensors (Basel) 2020;10:E198. [PMID: 33287157 DOI: 10.3390/bios10120198] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
103 Ham J, Yun BJ, Koh W. SERS-based biosensing platform using shape-coded hydrogel microparticles incorporating silver nanoparticles. Sensors and Actuators B: Chemical 2021;341:129989. [DOI: 10.1016/j.snb.2021.129989] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
104 Lafuente M, Pellejero I, Sebastián V, Urbiztondo MA, Mallada R, Pina MP, Santamaría J. Highly sensitive SERS quantification of organophosphorous chemical warfare agents: A major step towards the real time sensing in the gas phase. Sensors and Actuators B: Chemical 2018;267:457-66. [DOI: 10.1016/j.snb.2018.04.058] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
105 Xie J, Guo J, Wang D, Cang Y, Zhang W, Zhou J, Peng B, Li Y, Cui J, Chen L, Fytas G, Deng X. Self‐Assembly of Colloidal Nanoparticles into Well‐Ordered Centimeter‐Long Rods via Crack Engineering. Adv Mater Interfaces 2021;8:2000222. [DOI: 10.1002/admi.202000222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
106 Ahmed AM, Shaban M. Nanoporous chromium thin film for active detection of toxic heavy metals traces using surface-enhanced Raman spectroscopy. Mater Res Express 2020;7:015084. [DOI: 10.1088/2053-1591/ab6b62] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
107 Spurgeon PM, Lai KC, Han Y, Evans JW, Thiel PA. Fundamentals of Au(111) Surface Dynamics: Coarsening of Two-Dimensional Au Islands. J Phys Chem C 2020;124:7492-9. [DOI: 10.1021/acs.jpcc.9b12056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
108 Şahin S, Caglayan MO, Üstündağ Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochim Acta 2020;187:549. [PMID: 32888061 DOI: 10.1007/s00604-020-04526-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
109 Endo T, Yamada H, Yamada K. Template Stripping Method-Based Au Nanoarray for Surface-Enhanced Raman Scattering Detection of Antiepileptic Drug. Micromachines (Basel) 2020;11:E936. [PMID: 33066672 DOI: 10.3390/mi11100936] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
110 Hou X, Fan X, Wei P, Qiu T. Planar transition metal oxides SERS chips: a general strategy. J Mater Chem C 2019;7:11134-41. [DOI: 10.1039/c9tc03195b] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
111 Wang X, Ma X, Shi E, Lu P, Dou L, Zhang X, Wang H. Large-Scale Plasmonic Hybrid Framework with Built-In Nanohole Array as Multifunctional Optical Sensing Platforms. Small 2020;16:e1906459. [PMID: 32072751 DOI: 10.1002/smll.201906459] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
112 Lafuente M, Berenschot EJW, Tiggelaar RM, Rodrigo SG, Mallada R, Tas NR, Pina MP. Attomolar SERS detection of organophosphorous pesticides using silver mirror-like micro-pyramids as active substrate. Mikrochim Acta 2020;187:247. [PMID: 32219540 DOI: 10.1007/s00604-020-4216-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
113 Matricardi C, Hanske C, Garcia-Pomar JL, Langer J, Mihi A, Liz-Marzán LM. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates. ACS Nano 2018;12:8531-9. [PMID: 30106555 DOI: 10.1021/acsnano.8b04073] [Cited by in Crossref: 164] [Cited by in F6Publishing: 129] [Article Influence: 41.0] [Reference Citation Analysis]
114 Chien YS, Chang CW, Huang CC. Differential surface partitioning for an ultrasensitive solid-state SERS sensor and its application to food colorant analysis. Food Chem 2022;383:132415. [PMID: 35180601 DOI: 10.1016/j.foodchem.2022.132415] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Alyami A, Quinn AJ, Iacopino D. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 2019;201:58-64. [PMID: 31122461 DOI: 10.1016/j.talanta.2019.03.115] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
116 Pinheiro PC, Daniel-da-silva AL, Nogueira HIS, Trindade T. Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants: Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. Eur J Inorg Chem 2018;2018:3443-61. [DOI: 10.1002/ejic.201800132] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
117 Wang X, Li J, Gao X, Shen Y, Xie A. Ordered CdSe-sensitized TiO2 inverse opal film as multifunctional surface-enhanced Raman scattering substrate. Applied Surface Science 2019;463:357-62. [DOI: 10.1016/j.apsusc.2018.08.216] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
118 Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z. Nanosol SERS quantitative analytical method: A review. TrAC Trends in Analytical Chemistry 2020;127:115885. [DOI: 10.1016/j.trac.2020.115885] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
119 Jimenez-Cisneros J, Galindo-Lazo JP, Mendez-Rojas MA, Campos-Delgado JR, Cerro-Lopez M. Plasmonic Spherical Nanoparticles Coupled with Titania Nanotube Arrays Prepared by Anodization as Substrates for Surface-Enhanced Raman Spectroscopy Applications: A Review. Molecules 2021;26:7443. [PMID: 34946522 DOI: 10.3390/molecules26247443] [Reference Citation Analysis]
120 Lu YS, Vijayakumar S, Chaix A, Pimentel BR, Bentz KC, Li S, Chan A, Wahl C, Ha JS, Hunka DE, Boss GR, Cohen SM, Sailor MJ. Remote Detection of HCN, HF, and Nerve Agent Vapors Based on Self-Referencing, Dye-Impregnated Porous Silicon Photonic Crystals. ACS Sens 2021;6:418-28. [PMID: 33263399 DOI: 10.1021/acssensors.0c01931] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
121 Suarasan S, Liu J, Imanbekova M, Rojalin T, Hilt S, Voss JC, Wachsmann-Hogiu S. Superhydrophobic bowl-like SERS substrates patterned from CMOS sensors for extracellular vesicle characterization. J Mater Chem B 2020;8:8845-52. [PMID: 33026405 DOI: 10.1039/d0tb00889c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
122 Joshi P, Santhanam V. Inkjet-Based Fabrication Process with Control over the Morphology of SERS-Active Silver Nanostructures. Ind Eng Chem Res 2018;57:5250-8. [DOI: 10.1021/acs.iecr.7b04663] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
123 Kumar N, Thomas S, Rao R, Maiti N, Kshirsagar RJ. Surface‐enhanced Raman scattering based sensing of trans‐urocanic acid, an epidermal photoreceptor using silver nanoparticles aided by density functional theoretical calculations. J Raman Spectrosc 2019. [DOI: 10.1002/jrs.5590] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
124 Eid SM, El-Shamy S, Farag MA. Identification of milk quality and adulteration by surface-enhanced infrared absorption spectroscopy coupled to artificial neural networks using citrate-capped silver nanoislands. Mikrochim Acta 2022;189:301. [PMID: 35906496 DOI: 10.1007/s00604-022-05393-4] [Reference Citation Analysis]
125 Piergies N, Oćwieja M, Paluszkiewicz C, Kwiatek W. Nanoparticle stabilizer as a determining factor of the drug/gold surface interaction: SERS and AFM-SEIRA studies. Applied Surface Science 2021;537:147897. [DOI: 10.1016/j.apsusc.2020.147897] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
126 Sen Bishwas M, Malik M, Poddar P. Raman spectroscopy-based sensitive, fast and reversible vapour phase detection of explosives adsorbed on metal–organic frameworks UiO-67. New J Chem 2021;45:7145-53. [DOI: 10.1039/d0nj04915h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
127 Terry LR, Sanders S, Potoff RH, Kruel JW, Jain M, Guo H. Applications of surface‐enhanced Raman spectroscopy in environmental detection. Analytical Science Advances 2022;3:113-45. [DOI: 10.1002/ansa.202200003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Das S, Goswami LP, Gayathri J, Tiwari S, Saxena K, Mehta DS. Fabrication of low cost highly structured silver capped aluminium nanorods as SERS substrate for the detection of biological pathogens. Nanotechnology 2021;32. [PMID: 34428748 DOI: 10.1088/1361-6528/ac2097] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Sung CJ, Chao SH, Hsu SC. Rapid Detection of Glucose on Nanostructured Gold Film Biosensor by Surface-Enhanced Raman Spectroscopy. Biosensors (Basel) 2021;11:54. [PMID: 33669896 DOI: 10.3390/bios11020054] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
130 Ahmadi S, Rabiee N, Fatahi Y, Hooshmand SE, Bagherzadeh M, Rabiee M, Jajarmi V, Dinarvand R, Habibzadeh S, Saeb MR, Varma RS, Shokouhimehr M, Hamblin MR. Green chemistry and coronavirus. Sustain Chem Pharm 2021;21:100415. [PMID: 33686371 DOI: 10.1016/j.scp.2021.100415] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
131 Nargis H, Nawaz H, Bhatti H, Jilani K, Saleem M. Comparison of surface enhanced Raman spectroscopy and Raman spectroscopy for the detection of breast cancer based on serum samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021;246:119034. [DOI: 10.1016/j.saa.2020.119034] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
132 Hardy M, Kelleher L, de Carvalho Gomes P, Buchan E, Chu HOM, Goldberg Oppenheimer P. Methods in Raman spectroscopy for saliva studies – a review. Applied Spectroscopy Reviews. [DOI: 10.1080/05704928.2021.1969944] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Škrabić M, Kosović M, Gotić M, Mikac L, Ivanda M, Gamulin O. Near-Infrared Surface-Enhanced Raman Scattering on Silver-Coated Porous Silicon Photonic Crystals. Nanomaterials (Basel) 2019;9:E421. [PMID: 30871049 DOI: 10.3390/nano9030421] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
134 Kayran YU, Jambrec D, Schuhmann W. Nanostructured DNA Microarrays for Dual SERS and Electrochemical Read-out. Electroanalysis 2019;31:267-72. [DOI: 10.1002/elan.201800579] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
135 Piszter G, Molnár G, Pálinkás A, Osváth Z. Graphene-Encapsulated Silver Nanoparticles for Plasmonic Vapor Sensing. Nanomaterials 2022;12:2473. [DOI: 10.3390/nano12142473] [Reference Citation Analysis]
136 Nyamekye CKA, Weibel SC, Smith EA. Directional Raman scattering spectra of metal–sulfur bonds at smooth gold and silver substrates. J Raman Spectroscopy 2021;52:1246-55. [DOI: 10.1002/jrs.6124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
137 Byram C, Moram SSB, Shaik AK, Soma VR. Versatile gold based SERS substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate. Chemical Physics Letters 2017;685:103-7. [DOI: 10.1016/j.cplett.2017.07.043] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 6.6] [Reference Citation Analysis]
138 Chin C, Chen C, Chen X, Yen H, Hsien H, Young J, Chen Y. High sensitivity enhancement of multi-shaped silver-nanoparticle-decorated hydrophilic PVDF-based SERS substrates using solvating pretreatment. Sensors and Actuators B: Chemical 2021;347:130614. [DOI: 10.1016/j.snb.2021.130614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
139 Moisoiu V, Socaciu A, Stefancu A, Iancu S, Boros I, Alecsa C, Rachieriu C, Chiorean A, Eniu D, Leopold N, Socaciu C, Eniu D. Breast Cancer Diagnosis by Surface-Enhanced Raman Scattering (SERS) of Urine. Applied Sciences 2019;9:806. [DOI: 10.3390/app9040806] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 7.3] [Reference Citation Analysis]
140 Mandrile L, Giovannozzi AM, Sacco A, Martra G, Rossi AM. Flexible and Transparent Substrates Based on Gold Nanoparticles and TiO2 for in Situ Bioanalysis by Surface-Enhanced Raman Spectroscopy. Biosensors (Basel) 2019;9:E145. [PMID: 31861199 DOI: 10.3390/bios9040145] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
141 Risović D, Gebavi H, Ivanda M. Influence of fractal and lacunar characteristic of a nanostructured substrate on SERS enhancement. Applied Surface Science 2021;537:147915. [DOI: 10.1016/j.apsusc.2020.147915] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
142 Niklas C, Wackerbarth H, Ctistis G. A Short Review of Cavity-Enhanced Raman Spectroscopy for Gas Analysis. Sensors (Basel) 2021;21:1698. [PMID: 33801211 DOI: 10.3390/s21051698] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
143 Fornasaro S, Cialla-may D, Sergo V, Bonifacio A. The Role of Surface Enhanced Raman Scattering for Therapeutic Drug Monitoring of Antimicrobial Agents. Chemosensors 2022;10:128. [DOI: 10.3390/chemosensors10040128] [Reference Citation Analysis]
144 Das SK, Bhattacharya TS, Ghosh M, Chowdhury J. Probing blood plasma samples for the detection of diabetes using SERS aided by PCA and LDA multivariate data analyses. New J Chem 2021;45:2670-82. [DOI: 10.1039/d0nj04508j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
145 Turk N, Raza A, Wuytens P, Demol H, Van Daele M, Detavernier C, Skirtach A, Gevaert K, Baets R. Comparison of Free-Space and Waveguide-Based SERS Platforms. Nanomaterials (Basel) 2019;9:E1401. [PMID: 31581547 DOI: 10.3390/nano9101401] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
146 Jeon GW, Lee SH, Jang JW. Opposite Raman Shift of Ring Stretching Dependent on the Coordinated Silver Volume in Surface-Enhanced Raman Spectroscopy of Polypyrrole. J Phys Chem Lett 2022;:1300-6. [PMID: 35099975 DOI: 10.1021/acs.jpclett.1c04069] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
147 Karthick Kannan P, Shankar P, Blackman C, Chung CH. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing. Adv Mater 2019;31:e1803432. [PMID: 30773698 DOI: 10.1002/adma.201803432] [Cited by in Crossref: 87] [Cited by in F6Publishing: 64] [Article Influence: 29.0] [Reference Citation Analysis]
148 Li C, Wang H, Luo Y, Wen G, Jiang Z. A novel gold nanosol SERS quantitative analysis method for trace Na+ based on carbon dot catalysis. Food Chemistry 2019;289:531-6. [DOI: 10.1016/j.foodchem.2019.03.032] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
149 Azimi S, Docoslis A. Recent Advances in the Use of Surface-Enhanced Raman Scattering for Illicit Drug Detection. Sensors 2022;22:3877. [DOI: 10.3390/s22103877] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
150 Podoynitsyn SN, Sorokina ON, Nechaeva NL, Yanovich SV, Kurochkin IN. Surface-enhanced Raman spectroscopy in tandem with a gradient electric field from 4-mercaptophenylboronic acid on silver nanoparticles. Mikrochim Acta 2020;187:566. [PMID: 32929573 DOI: 10.1007/s00604-020-04550-x] [Reference Citation Analysis]
151 Berneschi S, Righini GC, Pelli S. Towards a Glass New World: The Role of Ion-Exchange in Modern Technology. Applied Sciences 2021;11:4610. [DOI: 10.3390/app11104610] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
152 Khairil Anwar NA, Mohd Nazri MN, Murtadha AH, Mohd Adzemi ER, Balakrishnan V, Mustaffa KMF, Tengku Din TADA, Yahya MM, Haron J, Mokshtar NF. Prognostic prospect of soluble programmed cell death ligand-1 in cancer management. Acta Biochim Biophys Sin (Shanghai) 2021;53:961-78. [PMID: 34180502 DOI: 10.1093/abbs/gmab077] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Zhang T, Wu L, Pei J, Li X, Li H, Inscore F. Part-Per-Billion Level Chemical Sensing with a Gold-Based SERS-Active Substrate. Sensors (Basel) 2022;22:1778. [PMID: 35270924 DOI: 10.3390/s22051778] [Reference Citation Analysis]
154 von Mentlen JM, Clarysse J, Moser A, Kumaar D, Yarema O, Sannomiya T, Yarema M, Wood V. Engineering of Oxide Protected Gold Nanoparticles. J Phys Chem Lett 2022;13:5824-30. [PMID: 35726976 DOI: 10.1021/acs.jpclett.2c01443] [Reference Citation Analysis]
155 Wang T, Liu M, Huang S, Yuan H, Zhao J, Chen J. Surface-enhanced Raman spectroscopy method for classification of doxycycline hydrochloride and tylosin in duck meat using gold nanoparticles. Poult Sci 2021;100:101165. [PMID: 33975036 DOI: 10.1016/j.psj.2021.101165] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
156 Fularz A, Almohammed S, Rice JH. SERS Enhancement of Porphyrin-Type Molecules on Metal-Free Cellulose-Based Substrates. ACS Sustainable Chem Eng 2021;9:16808-19. [DOI: 10.1021/acssuschemeng.1c06685] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
157 Pence IJ, Evans CL. Translational biophotonics with Raman imaging: clinical applications and beyond. Analyst 2021;146:6379-93. [PMID: 34596653 DOI: 10.1039/d1an00954k] [Reference Citation Analysis]
158 Awasthi V, Goel R, Rai P, Dubey SK. Detection of nitrogenous and nitro-aromatic compound with thin gold films roughened by cold argon plasma as SERS-active substrate. Surfaces and Interfaces 2022;28:101556. [DOI: 10.1016/j.surfin.2021.101556] [Reference Citation Analysis]
159 Ba Hashwan SS, Khir MHBM, Al-douri Y, Ahmed AY. Recent Progress in the Development of Biosensors for Chemicals and Pesticides Detection. IEEE Access 2020;8:82514-27. [DOI: 10.1109/access.2020.2991380] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
160 Quero G, Zito G, Managò S, Galeotti F, Pisco M, De Luca AC, Cusano A. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes. Sensors (Basel) 2018;18:E680. [PMID: 29495322 DOI: 10.3390/s18030680] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
161 Adamo CB, Poppi RJ, de Jesus DP. Improving surface-enhanced Raman scattering performance of gold-modified magnetic nanoparticles by using nickel-phosphorus film on polydimethylsiloxane. Microchemical Journal 2021;160:105704. [DOI: 10.1016/j.microc.2020.105704] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
162 Pilot R. SERS detection of food contaminants by means of portable Raman instruments. J Raman Spectrosc 2018;49:954-81. [DOI: 10.1002/jrs.5400] [Cited by in Crossref: 42] [Cited by in F6Publishing: 17] [Article Influence: 10.5] [Reference Citation Analysis]
163 Fu Y, Xin M, Chong J, Li R, Huang M. Plasmonic gold nanostars@ZIF-8 nanocomposite for the ultrasensitive detection of gaseous formaldehyde. J Mater Sci 2021;56:4151-60. [DOI: 10.1007/s10853-020-05507-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
164 Kondo T, Tomida A, Morishita N, Saito Y. Vapor-deposited Au thin films modified by plasma etching for surface-enhanced Raman scattering active substrates. Journal of Applied Physics 2020;127:093105. [DOI: 10.1063/1.5139586] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Xu Y, Ji D, Song H, Zhang N, Hu Y, Anthopoulos TD, Di Fabrizio EM, Xiao S, Gan Q. Light–Matter Interaction within Extreme Dimensions: From Nanomanufacturing to Applications. Advanced Optical Materials 2018;6:1800444. [DOI: 10.1002/adom.201800444] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
166 Semenova D, Gernaey KV, Silina YE. Exploring the potential of electroless and electroplated noble metal-semiconductor hybrids within bio- and environmental sensing. Analyst 2018;143:5646-69. [PMID: 30328420 DOI: 10.1039/c8an01632a] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
167 Proniewicz E, Tąta A, Wójcik A, Starowicz M, Pacek J, Molenda M. SERS activity and spectroscopic properties of Zn and ZnO nanostructures obtained by electrochemical and green chemistry methods for applications in biology and medicine. Phys Chem Chem Phys 2020;22:28100-14. [DOI: 10.1039/d0cp03517c] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
168 Doan QK, Nguyen MH, Sai CD, Pham VT, Mai HH, Pham NH, Bach TC, Nguyen VT, Nguyen TT, Ho KH, Tran TH. Enhanced optical properties of ZnO nanorods decorated with gold nanoparticles for self cleaning surface enhanced Raman applications. Applied Surface Science 2020;505:144593. [DOI: 10.1016/j.apsusc.2019.144593] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 7.5] [Reference Citation Analysis]
169 Li S, Xu J, Wang S, Xia X, Chen L, Chen Z. Versatile metal graphitic nanocapsules for SERS bioanalysis. Chinese Chemical Letters 2019;30:1581-92. [DOI: 10.1016/j.cclet.2019.05.049] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
170 Jaitpal S, Chavva SR, Mabbott S. 3D Printed SERS-Active Thin-Film Substrates Used to Quantify Levels of the Genotoxic Isothiazolinone. ACS Omega 2022;7:2850-60. [PMID: 35097281 DOI: 10.1021/acsomega.1c05707] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 Hreshchuk O, Yukhymchuk V; V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45, prospect Nauky, 03680 Kyiv, Ukraine, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45, prospect Nauky, 03680 Kyiv, Ukraine. Efficient SERS substrates based on laterally ordered gold nanostructures made using interference lithography. Semicond phys quantum electron optoelectron 2019;22:215-23. [DOI: 10.15407/spqeo22.02.215] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
172 Shvalya V, Filipič G, Zavašnik J, Abdulhalim I, Cvelbar U. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Applied Physics Reviews 2020;7:031307. [DOI: 10.1063/5.0015246] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
173 Nguyen M, Kherbouche I, Braik M, Belkhir A, Boubekeur-Lecaque L, Aubard J, Mangeney C, Felidj N. Dynamic Plasmonic Platform To Investigate the Correlation between Far-Field Optical Response and SERS Signal of Analytes. ACS Omega 2019;4:1144-50. [PMID: 31459390 DOI: 10.1021/acsomega.8b03107] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
174 Adhikari S, Ampadu EK, Kim M, Noh D, Oh E, Lee D. Detection of Explosives by SERS Platform Using Metal Nanogap Substrates. Sensors (Basel) 2021;21:5567. [PMID: 34451009 DOI: 10.3390/s21165567] [Reference Citation Analysis]
175 Owens NA, Pinter A, Porter MD. Surface-enhanced resonance Raman scattering for the sensitive detection of a tuberculosis biomarker in human serum. J Raman Spectrosc 2019;50:15-25. [DOI: 10.1002/jrs.5500] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
176 Kohut A, Kéri A, Horváth V, Kopniczky J, Ajtai T, Hopp B, Galbács G, Geretovszky Z. Facile and versatile substrate fabrication for surface enhanced Raman spectroscopy using spark discharge generation of Au/Ag nanoparticles. Applied Surface Science 2020;531:147268. [DOI: 10.1016/j.apsusc.2020.147268] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
177 Lafuente M, Berenschot EJW, Tiggelaar RM, Mallada R, Tas NR, Pina MP. 3D Fractals as SERS Active Platforms: Preparation and Evaluation for Gas Phase Detection of G-Nerve Agents. Micromachines (Basel) 2018;9:E60. [PMID: 30393336 DOI: 10.3390/mi9020060] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
178 Allione M, Limongi T, Marini M, Torre B, Zhang P, Moretti M, Perozziello G, Candeloro P, Napione L, Pirri CF, Di Fabrizio E. Micro/Nanopatterned Superhydrophobic Surfaces Fabrication for Biomolecules and Biomaterials Manipulation and Analysis. Micromachines (Basel) 2021;12:1501. [PMID: 34945349 DOI: 10.3390/mi12121501] [Reference Citation Analysis]
179 Guo Y, Girmatsion M, Li HW, Xie Y, Yao W, Qian H, Abraha B, Mahmud A. Rapid and ultrasensitive detection of food contaminants using surface-enhanced Raman spectroscopy-based methods. Crit Rev Food Sci Nutr 2020;:1-14. [PMID: 32772549 DOI: 10.1080/10408398.2020.1803197] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
180 Witkowska E, Łasica AM, Niciński K, Potempa J, Kamińska A. In Search of Spectroscopic Signatures of Periodontitis: A SERS-Based Magnetomicrofluidic Sensor for Detection of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. ACS Sens 2021;6:1621-35. [PMID: 33792284 DOI: 10.1021/acssensors.1c00166] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
181 Allayla AM, Faris RA, Mahdi ZF. Construction of insulin-like growth factor nanocomposite biosensor by Raman spectroscopy. Vibrational Spectroscopy 2021;114:103252. [DOI: 10.1016/j.vibspec.2021.103252] [Reference Citation Analysis]
182 Choi J, Kim JH, Oh JW, Nam JM. Surface-enhanced Raman scattering-based detection of hazardous chemicals in various phases and matrices with plasmonic nanostructures. Nanoscale 2019;11:20379-91. [PMID: 31642457 DOI: 10.1039/c9nr07439b] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
183 Phan HT, Haes AJ. Impacts of pH and Intermolecular Interactions on Surface-Enhanced Raman Scattering Chemical Enhancements. J Phys Chem C 2018;122:14846-56. [DOI: 10.1021/acs.jpcc.8b04019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
184 Zhong X, Ma L, Yin G, Gan M, Wei Y. Hg2+ Optical Fiber Sensor Based on LSPR with PDDA-Templated AuNPs and CS/PAA Bilayers. Applied Sciences 2020;10:4845. [DOI: 10.3390/app10144845] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
185 Kornilova AV, Novikov SM, Kuralbayeva GA, Jana S, Lysenko IV, Shpichka AI, Stavitskaya AV, Gorbachevskii MV, Novikov AA, Ikramova SB, Timashev PS, Arsenin AV, Volkov VS, Vasiliev AN, Timoshenko VY. Halloysite Nanotubes with Immobilized Plasmonic Nanoparticles for Biophotonic Applications. Applied Sciences 2021;11:4565. [DOI: 10.3390/app11104565] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
186 Pei H, Wei Y, Dai Q, Wang F. Plasmonic properties and optimization of ultraviolet surface-enhanced Raman spectroscopy. Optics Communications 2020;456:124631. [DOI: 10.1016/j.optcom.2019.124631] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
187 Küster T, Bothun GD. In situ SERS detection of dissolved nitrate on hydrated gold substrates. Nanoscale Adv 2021;3:4098-105. [DOI: 10.1039/d1na00156f] [Reference Citation Analysis]
188 Jiang J, Wang S, Deng H, Wu H, Chen J, Liao J. Rapid and sensitive detection of uranyl ion with citrate-stabilized silver nanoparticles by the surface-enhanced Raman scattering technique. R Soc Open Sci 2018;5:181099. [PMID: 30564403 DOI: 10.1098/rsos.181099] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
189 Susu L, Campu A, Astilean S, Focsan M. Calligraphed Selective Plasmonic Arrays on Paper Platforms for Complementary Dual Optical "ON/OFF Switch" Sensing. Nanomaterials (Basel) 2020;10:E1025. [PMID: 32471140 DOI: 10.3390/nano10061025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
190 Zhang R, Lv S, Gong Y, Li Y, Ding C. Sensitive determination of Hg(II) based on a hybridization chain recycling amplification reaction and surface-enhanced Raman scattering on gold nanoparticles. Microchim Acta 2018;185. [DOI: 10.1007/s00604-018-2907-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
191 Dey T. Microplastic pollutant detection by Surface Enhanced Raman Spectroscopy (SERS): a mini-review. Nanotechnol Environ Eng . [DOI: 10.1007/s41204-022-00223-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
192 Visaveliya NR, Mazetyte‐stasinskiene R, Köhler JM. General Background of SERS Sensing and Perspectives on Polymer‐Supported Plasmon‐Active Multiscale and Hierarchical Sensor Particles. Advanced Optical Materials 2022;10:2102001. [DOI: 10.1002/adom.202102001] [Reference Citation Analysis]
193 Kuzminova A, Šubr M, Kylián O, Kúš P, Hanuš J, Procházka M. Nanostructured metal coatings for surface-enhanced Raman spectroscopy (SERS) prepared by means of low-pressure plasma. Vacuum 2019;170:108951. [DOI: 10.1016/j.vacuum.2019.108951] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
194 Viehrig M, Rajendran ST, Sanger K, Schmidt MS, Alstrøm TS, Rindzevicius T, Zór K, Boisen A. Quantitative SERS Assay on a Single Chip Enabled by Electrochemically Assisted Regeneration: A Method for Detection of Melamine in Milk. Anal Chem 2020;92:4317-25. [DOI: 10.1021/acs.analchem.9b05060] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
195 Demirci G, Muszyńska J, Cetinkaya O, Filipczak P, Zhang Y, Nowaczyk G, Halagan K, Ulanski J, Matyjaszewski K, Pietrasik J, Kozanecki M. Effective SERS materials by loading Ag nanoparticles into poly(acrylic acid-stat-acrylamide)-block-polystyrene nano-objects prepared by PISA. Polymer 2021;224:123747. [DOI: 10.1016/j.polymer.2021.123747] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
196 Gordon R. Nanostructured metals for light-based technologies. Nanotechnology 2019;30:212001. [DOI: 10.1088/1361-6528/ab0435] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
197 Prakash J, Swart HC, Zhang G, Sun S. Emerging applications of atomic layer deposition for the rational design of novel nanostructures for surface-enhanced Raman scattering. J Mater Chem C 2019;7:1447-71. [DOI: 10.1039/c8tc06299d] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
198 Cortijo-Campos S, Ramírez-Jiménez R, de Andrés A. Raman and Fluorescence Enhancement Approaches in Graphene-Based Platforms for Optical Sensing and Imaging. Nanomaterials (Basel) 2021;11:644. [PMID: 33808013 DOI: 10.3390/nano11030644] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
199 Zacharovas E, Velička M, Platkevičius G, Čekauskas A, Želvys AN, Niaura G, Šablinskas V. Toward a SERS Diagnostic Tool for Discrimination between Cancerous and Normal Bladder Tissues via Analysis of the Extracellular Fluid. ACS Omega 2022;7:10539-49. [PMID: 35382275 DOI: 10.1021/acsomega.2c00058] [Reference Citation Analysis]
200 Montagut EJ, Raya J, Martin-Gomez MT, Vilaplana L, Rodriguez-Urretavizcaya B, Marco MP. An Immunochemical Approach to Detect the Quorum Sensing-Regulated Virulence Factor 2-Heptyl-4-Quinoline N-Oxide (HQNO) Produced by Pseudomonas aeruginosa Clinical Isolates. Microbiol Spectr 2022;:e0107321. [PMID: 35876587 DOI: 10.1128/spectrum.01073-21] [Reference Citation Analysis]
201 Liu Y, Feng H, Luo F. Quantitative analysis of the defects in CVD grown graphene by plasmon-enhanced Raman scattering. Carbon 2020;161:153-61. [DOI: 10.1016/j.carbon.2020.01.063] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
202 Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Reference Citation Analysis]
203 Barbillon G. Latest Novelties on Plasmonic and Non-Plasmonic Nanomaterials for SERS Sensing. Nanomaterials (Basel) 2020;10:E1200. [PMID: 32575470 DOI: 10.3390/nano10061200] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
204 Cabello G, Nwoko KC, Marco JF, Sánchez-arenillas M, Méndez-torres AM, Feldmann J, Yáñez C, Smith TA. Cu@Au self-assembled nanoparticles as SERS-active substrates for (bio)molecular sensing. Journal of Alloys and Compounds 2019;791:184-92. [DOI: 10.1016/j.jallcom.2019.03.279] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
205 Wang L, Womiloju AA, Höppener C, Schubert US, Hoeppener S. On the stability of microwave-fabricated SERS substrates - chemical and morphological considerations. Beilstein J Nanotechnol 2021;12:541-51. [PMID: 34194890 DOI: 10.3762/bjnano.12.44] [Reference Citation Analysis]
206 Nemciauskas K, Traksele L, Salaseviciene A, Snitka V. A silicon membrane-silver nanoparticles SERS chip for trace molecules detection. Microelectronic Engineering 2020;225:111282. [DOI: 10.1016/j.mee.2020.111282] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
207 Alanazi AT, Almohammed S, Rice JH. Plasmonic photo-catalysis using a CdS–silver nanowire composite. AIP Advances 2022;12:025223. [DOI: 10.1063/5.0066216] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
208 Doiron B, Mota M, Wells MP, Bower R, Mihai A, Li Y, Cohen LF, Alford NM, Petrov PK, Oulton RF, Maier SA. Quantifying Figures of Merit for Localized Surface Plasmon Resonance Applications: A Materials Survey. ACS Photonics 2019;6:240-59. [DOI: 10.1021/acsphotonics.8b01369] [Cited by in Crossref: 56] [Cited by in F6Publishing: 29] [Article Influence: 18.7] [Reference Citation Analysis]
209 Christiansen RE, Michon J, Benzaouia M, Sigmund O, Johnson SG. Inverse design of nanoparticles for enhanced Raman scattering. Opt Express 2020;28:4444. [DOI: 10.1364/oe.28.004444] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
210 Stefancu A, Moisoiu V, Couti R, Andras I, Rahota R, Crisan D, Pavel IE, Socaciu C, Leopold N, Crisan N. Combining SERS analysis of serum with PSA levels for improving the detection of prostate cancer. Nanomedicine 2018;13:2455-67. [DOI: 10.2217/nnm-2018-0127] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
211 Nowicka AB, Czaplicka M, Kowalska AA, Szymborski T, Kamińska A. Flexible PET/ITO/Ag SERS Platform for Label-Free Detection of Pesticides. Biosensors (Basel) 2019;9:E111. [PMID: 31546934 DOI: 10.3390/bios9030111] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
212 Moisoiu V, Stefancu A, Gulei D, Boitor R, Magdo L, Raduly L, Pasca S, Kubelac P, Mehterov N, Chiș V, Simon M, Muresan M, Irimie AI, Baciut M, Stiufiuc R, Pavel IE, Achimas-Cadariu P, Ionescu C, Lazar V, Sarafian V, Notingher I, Leopold N, Berindan-Neagoe I. SERS-based differential diagnosis between multiple solid malignancies: breast, colorectal, lung, ovarian and oral cancer. Int J Nanomedicine 2019;14:6165-78. [PMID: 31447558 DOI: 10.2147/IJN.S198684] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 6.3] [Reference Citation Analysis]
213 Serafinelli C, Fantoni A, Alegria ECBA, Vieira M. Hybrid Nanocomposites of Plasmonic Metal Nanostructures and 2D Nanomaterials for Improved Colorimetric Detection. Chemosensors 2022;10:237. [DOI: 10.3390/chemosensors10070237] [Reference Citation Analysis]
214 Phan-Quang GC, Yang N, Lee HK, Sim HYF, Koh CSL, Kao YC, Wong ZC, Tan EKM, Miao YE, Fan W, Liu T, Phang IY, Ling XY. Tracking Airborne Molecules from Afar: Three-Dimensional Metal-Organic Framework-Surface-Enhanced Raman Scattering Platform for Stand-Off and Real-Time Atmospheric Monitoring. ACS Nano 2019;13:12090-9. [PMID: 31518107 DOI: 10.1021/acsnano.9b06486] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 15.3] [Reference Citation Analysis]
215 Moldovan R, Vereshchagina E, Milenko K, Iacob BC, Bodoki AE, Falamas A, Tosa N, Muntean CM, Farcău C, Bodoki E. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal Chim Acta 2022;1209:339250. [PMID: 35569862 DOI: 10.1016/j.aca.2021.339250] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
216 Park E, Jin S, Park Y, Guo S, Chang H, Jung YM. Trapping analytes into dynamic hot spots using Tyramine-medicated crosslinking chemistry for designing versatile sensor. J Colloid Interface Sci 2021;607:782-90. [PMID: 34536935 DOI: 10.1016/j.jcis.2021.09.037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
217 Almaviva S, Palucci A, Aruffo E, Rufoloni A, Lai A. Bacillus thuringiensis Cells Selectively Captured by Phages and Identified by Surface Enhanced Raman Spectroscopy Technique. Micromachines (Basel) 2021;12:100. [PMID: 33498471 DOI: 10.3390/mi12020100] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
218 Muñoz P, Noordam CTN, Egberink RJM, Huskens J, Garcia-Blanco SM. Comparative study of multiple thiol-based self-assembled monolayer coatings for the SERS detection of nitrite, nitrate, and perchlorate anions in water. Appl Opt 2019;58:9345-52. [PMID: 31873524 DOI: 10.1364/AO.58.009345] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
219 Li M, Zhang X. Nanostructure-Based Surface-Enhanced Raman Spectroscopy Techniques for Pesticide and Veterinary Drug Residues Screening. Bull Environ Contam Toxicol 2021;107:194-205. [PMID: 32939593 DOI: 10.1007/s00128-020-02989-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
220 Zhang M, Chen T, Liu Y, Zhang J, Sun H, Yang J, Zhu J, Liu J, Wu Y. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. ACS Sens 2018;3:2446-54. [PMID: 30335972 DOI: 10.1021/acssensors.8b01023] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
221 Osváth Z, Pálinkás A, Piszter G, Molnár G. Synthesis and Characterization of Graphene-Silver Nanoparticle Hybrid Materials. Materials (Basel) 2020;13:E4660. [PMID: 33086668 DOI: 10.3390/ma13204660] [Reference Citation Analysis]
222 Eslami S, Palomba S. Integrated enhanced Raman scattering: a review. Nano Converg 2021;8:41. [PMID: 34860308 DOI: 10.1186/s40580-021-00290-7] [Reference Citation Analysis]
223 Ramanauskaite L, Mazeika V, Snitka V. SERS based monitoring of toluene vapors at ambient and elevated temperatures by using a ruffled silver nanolayer as a substrate. Mikrochim Acta 2018;185:477. [PMID: 30244290 DOI: 10.1007/s00604-018-3013-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
224 Kaewseekhao B, Nuntawong N, Eiamchai P, Roytrakul S, Reechaipichitkul W, Faksri K. Diagnosis of active tuberculosis and latent tuberculosis infection based on Raman spectroscopy and surface-enhanced Raman spectroscopy. Tuberculosis (Edinb) 2020;121:101916. [PMID: 32279876 DOI: 10.1016/j.tube.2020.101916] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
225 Zhang Y, Zhou J, He Y, Ye Y, An J. SERS active fibers from wet-spinning of alginate with gold nanoparticles for pH sensing. Spectrochim Acta A Mol Biomol Spectrosc 2022;271:120848. [PMID: 35042046 DOI: 10.1016/j.saa.2021.120848] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
226 Verma AK, Soni RK. Multi-spiked silver stars for ultrasensitive and multiplexed SERS detection of analytes. J Phys D: Appl Phys 2021;54:475107. [DOI: 10.1088/1361-6463/ac21fd] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
227 Wang J, Li J, Zeng C, Qu Q, Wang M, Qi W, Su R, He Z. Sandwich-Like Sensor for the Highly Specific and Reproducible Detection of Rhodamine 6G on a Surface-Enhanced Raman Scattering Platform. ACS Appl Mater Interfaces 2020;12:4699-706. [DOI: 10.1021/acsami.9b16773] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
228 Restaino SM, White IM. A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample. Anal Chim Acta 2019;1060:17-29. [PMID: 30902328 DOI: 10.1016/j.aca.2018.11.057] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 12.0] [Reference Citation Analysis]
229 Rusin CJ, El Bakkari M, Du R, Boluk Y, Mcdermott MT. Plasmonic Cellulose Nanofibers as Water-Dispersible Surface-Enhanced Raman Scattering Substrates. ACS Appl Nano Mater 2020;3:6584-97. [DOI: 10.1021/acsanm.0c01045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
230 Mandelbaum Y, Mottes R, Zalevsky Z, Zitoun D, Karsenty A. Investigations of Shape, Material and Excitation Wavelength Effects on Field Enhancement in SERS Advanced Tips. Nanomaterials (Basel) 2021;11:237. [PMID: 33477470 DOI: 10.3390/nano11010237] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
231 Kornilova AV, Gorbachevskii MV, Kuralbayeva GA, Jana S, Novikov AA, Eliseev AA, Vasiliev AN, Timoshenko VY. Plasmonic Properties of Halloysite Nanotubes with Immobilized Silver Nanoparticles for Applications in Surface‐Enhanced Raman Scattering. Phys Status Solidi A 2019;216:1800886. [DOI: 10.1002/pssa.201800886] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
232 Kuižová A, Kuzminova A, Kylián O, Kočišová E. Nanostructured Plasma Polymerized Fluorocarbon Films for Drop Coating Deposition Raman Spectroscopy (DCDRS) of Liposomes. Polymers (Basel) 2021;13:4023. [PMID: 34833322 DOI: 10.3390/polym13224023] [Reference Citation Analysis]
233 López-Castaños KA, Ortiz-Frade LA, Méndez E, Quiroga-González E, González-Fuentes MA, Méndez-Albores A. Indirect Quantification of Glyphosate by SERS Using an Incubation Process With Hemin as the Reporter Molecule: A Contribution to Signal Amplification Mechanism. Front Chem 2020;8:612076. [PMID: 33392153 DOI: 10.3389/fchem.2020.612076] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
234 Mercadal PA, Schejtman SDG, Cometto FP, Veglia AV, Coronado EA. Triggering gold nanoparticles formation on a quartz surface by nanosecond pulsed laser irradiation. RSC Adv 2021;11:22419-25. [PMID: 35480789 DOI: 10.1039/d1ra01991k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
235 Fabelinsky VI, Kozlov DN, Polivanov YN, Smirnov VV, Bokova‐sirosh SN, Obraztsova ED, Arzumanyan GM, Mamatkulov KZ, Afanasiev KN, Boginskaya IA, Budashov IA, Nechaeva NL. Laser intensity limits in surface‐enhanced linear and nonlinear Raman micro‐spectroscopy of organic molecule/Au‐nanoparticle conjugates. J Raman Spectrosc 2018;50:1311-20. [DOI: 10.1002/jrs.5645] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
236 Muscolo A, Pizzeghello D, Francioso O, Sanchez Cortes S, Nardi S. Effectiveness of Humic Substances and Phenolic Compounds in Regulating Plant-Biological Functionality. Agronomy 2020;10:1553. [DOI: 10.3390/agronomy10101553] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
237 Kumari N, Sood N, Krishnan V. Beetle wing inspired fabrication of nanojunction based biomimetic SERS substrates for sensitive detection of analytes. Materials Technology. [DOI: 10.1080/10667857.2020.1816382] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
238 Hashemi Astaneh S, Bhatia H, Nagay BE, Barão VAR, Jursich G, Sukotjo C, Takoudis CG. Is atomic layer deposition of silver possible on N95 masks? Appl Surf Sci 2022;591:153195. [PMID: 35370332 DOI: 10.1016/j.apsusc.2022.153195] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
239 Chen J, Meng D, Wang H, Li H, Ji Y, Shi X, Wu X. Aromatic thiol-modulated Ag overgrowth on gold nanoparticles: tracking the thiol's position in the core–shell nanoparticles. Nanoscale 2019;11:17471-7. [DOI: 10.1039/c9nr04131a] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
240 Ranishenka BV, Panarin AY, Chelnokova IA, Terekhov SN, Mojzes P, Shmanai VV. Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions. Beilstein J Nanotechnol 2021;12:902-12. [PMID: 34497738 DOI: 10.3762/bjnano.12.67] [Reference Citation Analysis]
241 Mueller AD, Tobing LYM, Zhang DH. Reliable Fabrication of High Aspect Ratio Plasmonic Nanostructures Based on Seedless Pulsed Electrodeposition. Adv Mater Technol 2019;4:1800364. [DOI: 10.1002/admt.201800364] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
242 Basu N, Satya Bharathi MS, Sharma M, Yadav K, Parmar AS, Soma VR, Lahiri J. Large Area Few-Layer Hexagonal Boron Nitride as a Raman Enhancement Material. Nanomaterials (Basel) 2021;11:622. [PMID: 33801504 DOI: 10.3390/nano11030622] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
243 Chakraborty S, Awasthi V, Goel R, Dubey SK. Numerical design of SERS-active substrate for analyte detection using gold-hexagonal patterns. Vibrational Spectroscopy 2021;117:103312. [DOI: 10.1016/j.vibspec.2021.103312] [Reference Citation Analysis]
244 Öner IH, David C, Querebillo CJ, Weidinger IM, Ly KH. Electromagnetic Field Enhancement of Nanostructured TiN Electrodes Probed with Surface-Enhanced Raman Spectroscopy. Sensors (Basel) 2022;22:487. [PMID: 35062448 DOI: 10.3390/s22020487] [Reference Citation Analysis]
245 Paccotti N, Boschetto F, Horiguchi S, Marin E, Chiadò A, Novara C, Geobaldo F, Giorgis F, Pezzotti G. Label-Free SERS Discrimination and In Situ Analysis of Life Cycle in Escherichia coli and Staphylococcus epidermidis. Biosensors (Basel) 2018;8:E131. [PMID: 30558342 DOI: 10.3390/bios8040131] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
246 Waiwijit U, Chananonnawathorn C, Eimchai P, Bora T, Hornyak G, Nuntawong N. Fabrication of Au-Ag nanorod SERS substrates by co-sputtering technique and dealloying with selective chemical etching. Applied Surface Science 2020;530:147171. [DOI: 10.1016/j.apsusc.2020.147171] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 7.5] [Reference Citation Analysis]
247 Palásti DJ, Albrycht P, Janovszky P, Paszkowska K, Geretovszky Z, Galbács G. Nanoparticle enhanced laser induced breakdown spectroscopy of liquid samples by using modified surface-enhanced Raman scattering substrates. Spectrochimica Acta Part B: Atomic Spectroscopy 2020;166:105793. [DOI: 10.1016/j.sab.2020.105793] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
248 Kharratian S, Urey H, Onbaşlı MC. Advanced Materials and Device Architectures for Magnetooptical Spatial Light Modulators. Adv Optical Mater 2020;8:1901381. [DOI: 10.1002/adom.201901381] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
249 Zhou H, Li X, Wang L, Liang Y, Jialading A, Wang Z, Zhang J. Application of SERS quantitative analysis method in food safety detection. Reviews in Analytical Chemistry 2021;40:173-86. [DOI: 10.1515/revac-2021-0132] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
250 Tezcan T, Boyaci IH. A new and facile route to prepare gold nanoparticle clusters on anodic aluminium oxide as a SERS substrate. Talanta 2021;232:122426. [PMID: 34074412 DOI: 10.1016/j.talanta.2021.122426] [Reference Citation Analysis]
251 Byram C, Rathod J, Moram SSB, Mangababu A, Soma VR. Picosecond Laser-Ablated Nanoparticles Loaded Filter Paper for SERS-Based Trace Detection of Thiram, 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX), and Nile Blue. Nanomaterials 2022;12:2150. [DOI: 10.3390/nano12132150] [Reference Citation Analysis]
252 Li TJ, Wen BY, Ma XH, Huang WT, Wu JZ, Lin XM, Zhang YJ, Li JF. Rapid and Simple Analysis of the Human Pepsin Secondary Structure Using a Portable Raman Spectrometer. Anal Chem 2021. [PMID: 34928126 DOI: 10.1021/acs.analchem.1c04531] [Reference Citation Analysis]
253 Yamaguchi U, Ogawa M, Takei H. Patterned Superhydrophobic SERS Substrates for Sample Pre-Concentration and Demonstration of Its Utility through Monitoring of Inhibitory Effects of Paraoxon and Carbaryl on AChE. Molecules 2020;25:E2223. [PMID: 32397331 DOI: 10.3390/molecules25092223] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
254 Ambroziak R, Hołdyński M, Płociński T, Pisarek M, Kudelski A. Cubic Silver Nanoparticles Fixed on TiO2 Nanotubes as Simple and Efficient Substrates for Surface Enhanced Raman Scattering. Materials (Basel) 2019;12:E3373. [PMID: 31623068 DOI: 10.3390/ma12203373] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
255 Kohut A, Villy LP, Kéri A, Bélteki Á, Megyeri D, Hopp B, Galbács G, Geretovszky Z. Full range tuning of the composition of Au/Ag binary nanoparticles by spark discharge generation. Sci Rep 2021;11:5117. [PMID: 33664331 DOI: 10.1038/s41598-021-84392-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
256 Huang Z, Siddhanta S, Zheng G, Kickler T, Barman I. Rapid, Label‐free Optical Spectroscopy Platform for Diagnosis of Heparin‐Induced Thrombocytopenia. Angew Chem 2020;132:6028-34. [DOI: 10.1002/ange.201913970] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
257 Magalhães FB, Jaimes RFVV, Cório P, Salcedo WJ. SERS fluctuations of NAD molecules adsorbed on arrays of Au nanocylinders. Opt Mater Express 2021;11:3154. [DOI: 10.1364/ome.434894] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
258 Yu M, Tian Q, He G, Cui K, Zhang J. Surface-Enhanced Raman Scattering Fiber Probe Based on Silver Nanocubes. Adv Fiber Mater 2021;3:349-58. [DOI: 10.1007/s42765-021-00106-7] [Reference Citation Analysis]
259 Utsav, Khanna S, Makani NH, Paneliya S, Mukhopadhyay I, Banerjee R. Thermal crowning mechanism in gold-silica nanocomposites: plasmonic-photonic pairing in archetypal two-dimensional structures. Phys Chem Chem Phys 2021. [PMID: 34351337 DOI: 10.1039/d1cp03002g] [Reference Citation Analysis]
260 Jonker D, Jafari Z, Winczewski JP, Eyovge C, Berenschot JW, Tas NR, Gardeniers JGE, De Leon I, Susarrey-Arce A. A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars. Nanoscale Adv 2021;3:4926-39. [PMID: 34485816 DOI: 10.1039/d1na00316j] [Reference Citation Analysis]
261 Xie Y. Fabrication of Highly Ordered Ag/TiO2 Nanopore Array as a Self-Cleaning and Recycling SERS Substrate. Aust J Chem 2021;74:715. [DOI: 10.1071/ch21142] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
262 Bodelón G, Pastoriza-Santos I. Recent Progress in Surface-Enhanced Raman Scattering for the Detection of Chemical Contaminants in Water. Front Chem 2020;8:478. [PMID: 32582643 DOI: 10.3389/fchem.2020.00478] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
263 Týčová A, Klepárník K. Combination of liquid-based column separations with surface-enhanced Raman spectroscopy. J Sep Sci 2019;42:431-44. [PMID: 30267463 DOI: 10.1002/jssc.201800852] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
264 Yadav V, Siddhanta S. Engineering chiral plasmonic nanostructures for gain-assisted plasmon amplification and tunable enhancement of circular dichroism. Mater Adv . [DOI: 10.1039/d1ma01067k] [Reference Citation Analysis]
265 Zhao Y, Zhang J, Gouda M, Zhang C, Lin L, Nie P, Ye H, Huang W, Ye Y, Zhou C, He Y. Structure analysis and non-invasive detection of cadmium-phytochelatin2 complexes in plant by deep learning Raman spectrum. J Hazard Mater 2021;427:128152. [PMID: 35033726 DOI: 10.1016/j.jhazmat.2021.128152] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
266 Kaleem A, Azmat M, Sharma A, Shen G, Ding X. Melamine detection in liquid milk based on selective porous polymer monolith mediated with gold nanospheres by using surface enhanced Raman scattering. Food Chemistry 2019;277:624-31. [DOI: 10.1016/j.foodchem.2018.11.027] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 6.7] [Reference Citation Analysis]
267 Ma Y, Cai F, Li Y, Chen J, Han F, Lin W. A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Bioact Mater 2020;5:732-43. [PMID: 32596555 DOI: 10.1016/j.bioactmat.2020.05.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
268 Phan-Quang GC, Han X, Koh CSL, Sim HYF, Lay CL, Leong SX, Lee YH, Pazos-Perez N, Alvarez-Puebla RA, Ling XY. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage. Acc Chem Res 2019;52:1844-54. [PMID: 31180637 DOI: 10.1021/acs.accounts.9b00163] [Cited by in Crossref: 51] [Cited by in F6Publishing: 31] [Article Influence: 17.0] [Reference Citation Analysis]
269 Saviñon-Flores F, Méndez E, López-Castaños M, Carabarin-Lima A, López-Castaños KA, González-Fuentes MA, Méndez-Albores A. A Review on SERS-Based Detection of Human Virus Infections: Influenza and Coronavirus. Biosensors (Basel) 2021;11:66. [PMID: 33670852 DOI: 10.3390/bios11030066] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]