BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu L, Guo X, Liu W, Lee C. Recent Progress in the Energy Harvesting Technology-From Self-Powered Sensors to Self-Sustained IoT, and New Applications. Nanomaterials (Basel) 2021;11:2975. [PMID: 34835739 DOI: 10.3390/nano11112975] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu S, Liang X, Chen P, Long H, Jiang T, Wang ZL. Multilayered Helical Spherical Triboelectric Nanogenerator with Charge Shuttling for Water Wave Energy Harvesting. Small Methods 2023;:e2201392. [PMID: 36709488 DOI: 10.1002/smtd.202201392] [Reference Citation Analysis]
2 Qin W, Liu Q, Wang Y, Xie Z, Zhou Z. Increase output of vibration energy harvester by a different piezoelectric mode and branch structure design. J Phys D: Appl Phys 2022;56:034001. [DOI: 10.1088/1361-6463/aca774] [Reference Citation Analysis]
3 Fan K, Chen C, Zhang B, Li X, Wang Z, Cheng T, Lin Wang Z. Robust triboelectric-electromagnetic hybrid nanogenerator with maglev-enabled automatic mode transition for exploiting breeze energy. Applied Energy 2022;328:120218. [DOI: 10.1016/j.apenergy.2022.120218] [Reference Citation Analysis]
4 Kong L, Tang M, Zhang Z, Pan Y, Cao H, Wang X, Ahmed A. A near-zero energy system based on a kinetic energy harvester for smart ranch. iScience 2022;25:105448. [PMID: 36590459 DOI: 10.1016/j.isci.2022.105448] [Reference Citation Analysis]
5 Zhang M, Sheng N, Song Q, Zhang H, Chen S, Wang H, Zhang K. Enhanced selective ion transport by assembling nanofibers to membrane pairs with channel-like nanopores for osmotic energy harvesting. Nano Energy 2022;103:107786. [DOI: 10.1016/j.nanoen.2022.107786] [Reference Citation Analysis]
6 Yang Y, Guo X, Zhu M, Sun Z, Zhang Z, He T, Lee C. Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Advanced Energy Materials 2022. [DOI: 10.1002/aenm.202203040] [Reference Citation Analysis]
7 Rana S, Singh V, Singh B. Tailoring the Output Performance of PVDF-Based Piezo–Tribo Hybridized Nanogenerators via B, N-Codoped Reduced Graphene Oxide. ACS Appl Electron Mater 2022. [DOI: 10.1021/acsaelm.2c01085] [Reference Citation Analysis]
8 Jiang N, Qu M, Wang H, Bin Y, Zhang R, Tang P. Energy harvesting and temperature sensing thermoelectric devices based on the carbon template method. J of Applied Polymer Sci 2022. [DOI: 10.1002/app.53336] [Reference Citation Analysis]
9 Yang Y, Mu B, Wang M, Nikitina M, Zafari U, Xiao X. Triboelectric nanogenerator–based wireless sensing for food precise positioning. Materials Today Sustainability 2022;19:100220. [DOI: 10.1016/j.mtsust.2022.100220] [Reference Citation Analysis]
10 Liu L, Shi Q, Guo X, Zhang Z, Lee C. A facile frequency tuning strategy to realize vibration‐based hybridized piezoelectric‐triboelectric nanogenerators. EcoMat. [DOI: 10.1002/eom2.12279] [Reference Citation Analysis]
11 Yang Y, Shi Q, Zhang Z, Shan X, Salam B, Lee C. Robust triboelectric information‐mat enhanced by multi‐modality deep learning for smart home. InfoMat. [DOI: 10.1002/inf2.12360] [Reference Citation Analysis]
12 Tian S, Wei X, Lai L, Li B, Wu Z, Dai Y. Frequency Modulated Hybrid Nanogenerator for Efficient Water Wave Energy Harvesting. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.107669] [Reference Citation Analysis]
13 Ding J, Jiang J, Lin T, Liu G, Yao H, Wen H, Li S, Mo F, Wan L. Realization of a Sustainable Charging Power Source by In Situ Low‐Frequency Water Wave Energy Harvesting with a Coaxial Triboelectric–Electromagnetic Hybrid Generator. Adv Energy and Sustain Res 2022. [DOI: 10.1002/aesr.202200087] [Reference Citation Analysis]
14 Liu Y, Li D, Hou Y, Wang ZL. Grating‐Structured Freestanding Triboelectric Nanogenerator for Self‐Powered Acceleration Sensing in Real Time. Adv Materials Technologies. [DOI: 10.1002/admt.202200746] [Reference Citation Analysis]
15 Liu H, Xu Y, Xiao Y, Zhang S, Qu C, Lv L, Chen H, Song G. Highly Adaptive Liquid–Solid Triboelectric Nanogenerator-Assisted Self-Powered Water Wave Motion Sensor. ACS Appl Electron Mater . [DOI: 10.1021/acsaelm.2c00537] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zhang X, Zhao J, Fu X, Lin Y, Qi Y, Zhou H, Zhang C. Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators. Nano Energy 2022;98:107209. [DOI: 10.1016/j.nanoen.2022.107209] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
17 Wang W, Xiao H, Zhang L, Wang Y, Yuan Q, Tan J. Mechanical energy-induced charge separation in intelligent sensing. Cell Reports Physical Science 2022. [DOI: 10.1016/j.xcrp.2022.100952] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Wang C, Shi Q, Lee C. Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials (Basel) 2022;12:1366. [PMID: 35458075 DOI: 10.3390/nano12081366] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
19 Bhatta T, Sharma S, Shrestha K, Shin Y, Seonu S, Lee S, Kim D, Sharifuzzaman M, Rana SS, Park JY. Siloxene/PVDF Composite Nanofibrous Membrane for High‐Performance Triboelectric Nanogenerator and Self‐Powered Static and Dynamic Pressure Sensing Applications. Adv Funct Materials 2022;32:2202145. [DOI: 10.1002/adfm.202202145] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
20 Ben Ammar M, Ben Dhaou I, El Houssaini D, Sahnoun S, Fakhfakh A, Kanoun O. Requirements for Energy-Harvesting-Driven Edge Devices Using Task-Offloading Approaches. Electronics 2022;11:383. [DOI: 10.3390/electronics11030383] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Song C, Xia K, Xu Z. A self-supported structure hybrid triboelectric/piezoelectric nanogenerator for bio-mechanical energy harvesting and pressure sensing. Microelectronic Engineering 2022. [DOI: 10.1016/j.mee.2022.111723] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Khatua DK, Kim S. Perspective on the development of high performance flexible piezoelectric energy harvesters. J Mater Chem C. [DOI: 10.1039/d1tc06089a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Sriphan S, Charoonsuk T, Maluangnont T, Vittayakorn N. Piezoelectric Energy Harvesting for Low-Power Smart Electronics. Reference Module in Materials Science and Materials Engineering 2022. [DOI: 10.1016/b978-0-12-819728-8.00050-4] [Reference Citation Analysis]