BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ramanavicius S, Ramanavicius A. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells. Nanomaterials (Basel) 2021;11:371. [PMID: 33540587 DOI: 10.3390/nano11020371] [Cited by in Crossref: 12] [Cited by in F6Publishing: 48] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Pan Q, Wu Q, Sun Q, Zhou X, Cheng L, Zhang S, Yuan Y, Zhang Z, Ma J, Zhang Y, Zhu B. Biomolecule-friendly conducting PEDOT interface for long-term bioelectronic devices. Sensors and Actuators B: Chemical 2022;373:132703. [DOI: 10.1016/j.snb.2022.132703] [Reference Citation Analysis]
2 Sun R, Lv R, Du T, Li Y, Zhang Y, Chen L, Qi Y. Freeze-thaw induced co-assembly of multi-enzyme immobilized AuNPs probes for fast detection of glucose and hypoxanthine. Microchemical Journal 2022;181:107755. [DOI: 10.1016/j.microc.2022.107755] [Reference Citation Analysis]
3 Samukaite Bubniene U, Zukauskas S, Ratautaite V, Vilkiene M, Mockeviciene I, Liustrovaite V, Drobysh M, Lisauskas A, Ramanavicius S, Ramanavicius A. Assessment of Cytochrome c and Chlorophyll a as Natural Redox Mediators for Enzymatic Biofuel Cells Powered by Glucose. Energies 2022;15:6838. [DOI: 10.3390/en15186838] [Reference Citation Analysis]
4 Özkan BÇ, Aras TS, Turhan H, Ak M. Highly Stable and Reproducible Biosensor Interface based on Chitosan and 2,5-Di(thienyl)pyrrole based Conjugated Polymer. Materials Chemistry and Physics 2022;288:126397. [DOI: 10.1016/j.matchemphys.2022.126397] [Reference Citation Analysis]
5 Du Y, Zhang X, Liu P, Yu D, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022;10:944428. [DOI: 10.3389/fchem.2022.944428] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
6 Sharma D, Dutta HS, Dhayal M. Langmuir-Blodgett monolayer of electrochemically synthesized PANI-TiO2 nanocomposites for MSG biosensor. Applied Surface Science Advances 2022;10:100264. [DOI: 10.1016/j.apsadv.2022.100264] [Reference Citation Analysis]
7 Tawalbeh M, Muhammad Nauman Javed R, Al-othman A, Almomani F. The novel advancements of nanomaterials in biofuel cells with a focus on electrodes’ applications. Fuel 2022;322:124237. [DOI: 10.1016/j.fuel.2022.124237] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 Olabi AG, Wilberforce T, Alanazi A, Vichare P, Sayed ET, Maghrabie HM, Elsaid K, Abdelkareem MA. Novel Trends in Proton Exchange Membrane Fuel Cells. Energies 2022;15:4949. [DOI: 10.3390/en15144949] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022;305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
10 Gabriunaite I, Valiuniene A, Ramanavicius S, Ramanavicius A. Biosensors Based on Bio-Functionalized Semiconducting Metal Oxides. Crit Rev Anal Chem 2022;:1-16. [PMID: 35714203 DOI: 10.1080/10408347.2022.2088226] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Wang C, Du L, Xing X, Feng D, Tian Y, Li Z, Yang D. Flexible carbon cloth in-situ assembling WO3 microsheets bunches with Ni dopants for non-enzymatic glucose sensing. Applied Surface Science 2022;586:152822. [DOI: 10.1016/j.apsusc.2022.152822] [Reference Citation Analysis]
12 Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. Food Bioscience 2022;47:101695. [DOI: 10.1016/j.fbio.2022.101695] [Reference Citation Analysis]
13 Chambers A, Prawer S, Ahnood A, Zhan H. Diamond Supercapacitors: Towards Durable, Safe, and Biocompatible Aqueous-Based Energy Storage. Front Chem 2022;10:924127. [DOI: 10.3389/fchem.2022.924127] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ratautaite V, Brazys E, Ramanaviciene A, Ramanavicius A. Electrochemical Sensors based on L-Tryptophan Molecularly Imprinted Polypyrrole and Polyaniline. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.116389] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Wu H, Yamada K, Murata M, Matsumoto H, Ohnuki H, Endo H. A novel interactive biosensor system for real-time remote stress response monitoring and visualization by using bi-directional data link. Biosensors and Bioelectronics: X 2022;10:100133. [DOI: 10.1016/j.biosx.2022.100133] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Qasim KF, Mousa MA. Effect of Oxidizer on PANI for Producing BaTiO3@PANI Perovskite Composites and Their Electrical and Electrochemical Properties. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02335-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Mei X, Lu S, Chen Y. The influence of deposition time on electrochemical performance of Prussian blue-modified submicron-structured gold electrodes for hydrogen peroxide sensing. Chem Pap . [DOI: 10.1007/s11696-022-02212-1] [Reference Citation Analysis]
18 Ghanam A, Haddour N, Mohammadi H, Amine A, Sabac A, Buret F. Nanoporous Cauliflower-like Pd-Loaded Functionalized Carbon Nanotubes as an Enzyme-Free Electrocatalyst for Glucose Sensing at Neutral pH: Mechanism Study. Sensors (Basel) 2022;22:2706. [PMID: 35408320 DOI: 10.3390/s22072706] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhang Y, Liu M, Pan S, Yu L, Zhang S, Liu R. A magnetically induced self-assembled and label-free electrochemical aptasensor based on magnetic Fe3O4/Fe2O3@Au nanoparticles for VEGF165 protein detection. Applied Surface Science 2022;580:152362. [DOI: 10.1016/j.apsusc.2021.152362] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
20 Qi L, Xu H, Tang R, Liu L, Chen Y, Wen Q. Study on power generation and Congo red decolorization of 3D conductive PPy-CNT hydrogel in bioelectrochemical system. International Journal of Hydrogen Energy 2022. [DOI: 10.1016/j.ijhydene.2022.03.161] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Plikusiene I, Maciulis V, Ramanavicius A, Ramanaviciene A. Spectroscopic Ellipsometry and Quartz Crystal Microbalance with Dissipation for the Assessment of Polymer Layers and for the Application in Biosensing. Polymers (Basel) 2022;14:1056. [PMID: 35267879 DOI: 10.3390/polym14051056] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Ramanavicius S, Samukaite-bubniene U, Ratautaite V, Bechelany M, Ramanavicius A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). Journal of Pharmaceutical and Biomedical Analysis 2022. [DOI: 10.1016/j.jpba.2022.114739] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
23 Ramanavičius S, Morkvėnaitė-Vilkončienė I, Samukaitė-Bubnienė U, Ratautaitė V, Plikusienė I, Viter R, Ramanavičius A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. Sensors (Basel) 2022;22:1282. [PMID: 35162027 DOI: 10.3390/s22031282] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
24 Haqyar A, Raissi H, Farzad F, Hashemzadeh H. A strategy toward therapeutic improvement of electric field-sensitive gemcitabine prodrugs in 2D metal–organic frameworks in view of their structure and interactions. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.109281] [Reference Citation Analysis]
25 Ratautaite V, Boguzaite R, Brazys E, Ramanaviciene A, Ciplys E, Juozapaitis M, Slibinskas R, Bechelany M, Ramanavicius A. Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim Acta 2022;403:139581. [PMID: 34898691 DOI: 10.1016/j.electacta.2021.139581] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 28.0] [Reference Citation Analysis]
26 Sun KW, Wang F, Ma TM, Zeng H. Investigation on impact of mutual interactions between elements of Ag nano-particle core-MOF material shell nano-complex and incorporated hemoglobin on electro-catalysis on H2O2 electro-reduction. Chem Pap . [DOI: 10.1007/s11696-022-02070-x] [Reference Citation Analysis]
27 Drobysh M, Ramanaviciene A, Viter R, Chen CF, Samukaite-Bubniene U, Ratautaite V, Ramanavicius A. Biosensors for the Determination of SARS-CoV-2 Virus and Diagnosis of COVID-19 Infection. Int J Mol Sci 2022;23:666. [PMID: 35054850 DOI: 10.3390/ijms23020666] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 20.0] [Reference Citation Analysis]
28 Zinovicius A, Rozene J, Merkelis T, Bruzaite I, Ramanavicius A, Morkvenaite-Vilkonciene I. Evaluation of a Yeast-Polypyrrole Biocomposite Used in Microbial Fuel Cells. Sensors (Basel) 2022;22:327. [PMID: 35009869 DOI: 10.3390/s22010327] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
29 Savin R, Benzaamia N, Njel C, Pronkin S, Blanck C, Schmutz M, Boulmedais F. Nanohybrid biosensor based on mussel-inspired electro-cross-linking of tannic acid capped gold nanoparticles and enzymes. Mater Adv 2022;3:2222-33. [DOI: 10.1039/d1ma01193f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Kruk T, Bzowska M, Hinz A, Szuwarzyński M, Szczepanowicz K. Control of Specific/Nonspecific Protein Adsorption: Functionalization of Polyelectrolyte Multilayer Films as a Potential Coating for Biosensors. Materials (Basel) 2021;14:7629. [PMID: 34947226 DOI: 10.3390/ma14247629] [Reference Citation Analysis]
31 Hui Y, Wang H, Zuo W, Ma X. Spider nest shaped multi-scale three-dimensional enzymatic electrodes for glucose/oxygen biofuel cells. International Journal of Hydrogen Energy 2021. [DOI: 10.1016/j.ijhydene.2021.11.210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Yin B, Wu C, Hou D, Li S, Jin Z, Wang M, Wang X. Research and application progress of nano-modified coating in improving the durability of cement-based materials. Progress in Organic Coatings 2021;161:106529. [DOI: 10.1016/j.porgcoat.2021.106529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 Cheng YW, Huang WY, Ho KS, Hsieh TH, Jheng LC, Kuo YM. Fe, N-Doped Metal Organic Framework Prepared by the Calcination of Iron Chelated Polyimines as the Cathode-Catalyst of Proton Exchange Membrane Fuel Cells. Polymers (Basel) 2021;13:3850. [PMID: 34771406 DOI: 10.3390/polym13213850] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
34 Babeli I, Puiggalí-Jou A, Roa JJ, Ginebra MP, García-Torres J, Alemán C. Hybrid conducting alginate-based hydrogel for hydrogen peroxide detection from enzymatic oxidation of lactate. Int J Biol Macromol 2021:S0141-8130(21)02326-6. [PMID: 34742851 DOI: 10.1016/j.ijbiomac.2021.10.169] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
35 Hashim HS, Fen YW, Omar NAS, Fauzi NIM. Sensing Methods for Hazardous Phenolic Compounds Based on Graphene and Conducting Polymers-Based Materials. Chemosensors 2021;9:291. [DOI: 10.3390/chemosensors9100291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Kesküla A, Peikolainen AL, Kilmartin PA, Kiefer R. Solvent Effect in Imidazole-Based Poly(Ionic liquid) Membranes: Energy Storage and Sensing. Polymers (Basel) 2021;13:3466. [PMID: 34685225 DOI: 10.3390/polym13203466] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Chen J, Jiang L, Yang J, Wang X, An Y, Yang D, Wei Q, Wang Y, Wang R, Yang Y, Liu Y. Enhanced electrochemical performance in microbial fuel cell with carbon nanotube/NiCoAl-layered double hydroxide nanosheets as air-cathode. International Journal of Hydrogen Energy 2021;46:36466-76. [DOI: 10.1016/j.ijhydene.2021.08.168] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
38 Akram R, Yaseen M, Farooq Z, Rauf A, Almohaimeed ZM, Ikram M, Zafar Q. Capacitive and Conductometric Type Dual-Mode Relative Humidity Sensor Based on 5,10,15,20-tetra Phenyl Porphyrinato Nickel (II) (TPPNi). Polymers (Basel) 2021;13:3336. [PMID: 34641151 DOI: 10.3390/polym13193336] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
39 Hussain M, Hasnain S, Khan NA, Bano S, Zuhra F, Ali M, Khan M, Abbas N, Ali A. Design and Fabrication of a Fast Response Resistive-Type Humidity Sensor Using Polypyrrole (Ppy) Polymer Thin Film Structures. Polymers (Basel) 2021;13:3019. [PMID: 34577920 DOI: 10.3390/polym13183019] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Yang L, Wang A, Wen Q, Chen Y. Modified cobalt-manganese oxide-coated carbon felt anodes: an available method to improve the performance of microbial fuel cells. Bioprocess Biosyst Eng 2021;44:2615-25. [PMID: 34477974 DOI: 10.1007/s00449-021-02631-6] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
41 Settu K, Chiu PT, Huang YM. Laser-Induced Graphene-Based Enzymatic Biosensor for Glucose Detection. Polymers (Basel) 2021;13:2795. [PMID: 34451332 DOI: 10.3390/polym13162795] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
42 Haque SU, Duteanu N, Ciocan S, Nasar A, Inamuddin. A review: Evolution of enzymatic biofuel cells. J Environ Manage 2021;298:113483. [PMID: 34391107 DOI: 10.1016/j.jenvman.2021.113483] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
43 El-mansy M, Ibrahim M, Suvitha A, Abdelsalam H, Osman W. Boosted electronic, optical, and NLO responses of homo P-nanoclusters via conducting polymeric substituents. Computational and Theoretical Chemistry 2021;1202:113343. [DOI: 10.1016/j.comptc.2021.113343] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Frattini D, Karunakaran G, Cho E, Kwon Y. Sustainable Syntheses and Sources of Nanomaterials for Microbial Fuel/Electrolysis Cell Applications: An Overview of Recent Progress. Processes 2021;9:1221. [DOI: 10.3390/pr9071221] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
45 German N, Ramanaviciene A, Ramanavicius A. Dispersed Conducting Polymer Nanocomposites with Glucose Oxidase and Gold Nanoparticles for the Design of Enzymatic Glucose Biosensors. Polymers (Basel) 2021;13:2173. [PMID: 34209068 DOI: 10.3390/polym13132173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
46 Preet A, Lin T. A Review: Scanning Electrochemical Microscopy (SECM) for Visualizing the Real-Time Local Catalytic Activity. Catalysts 2021;11:594. [DOI: 10.3390/catal11050594] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
47 Drobysh M, Ramanaviciene A, Viter R, Ramanavicius A. Affinity Sensors for the Diagnosis of COVID-19. Micromachines (Basel) 2021;12:390. [PMID: 33918184 DOI: 10.3390/mi12040390] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 33.0] [Reference Citation Analysis]
48 Andriukonis E, Celiesiute-Germaniene R, Ramanavicius S, Viter R, Ramanavicius A. From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells. Sensors (Basel) 2021;21:2442. [PMID: 33916302 DOI: 10.3390/s21072442] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
49 Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) 2021;13:974. [PMID: 33810074 DOI: 10.3390/polym13060974] [Cited by in Crossref: 10] [Cited by in F6Publishing: 56] [Article Influence: 10.0] [Reference Citation Analysis]