BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nurrohman DT, Chiu NF. A Review of Graphene-Based Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Biosensors: Current Status and Future Prospects. Nanomaterials (Basel) 2021;11:216. [PMID: 33467669 DOI: 10.3390/nano11010216] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang G, Huang L. Sensitivity enhancement of a silver based surface plasmon resonance sensor via an optimizing graphene-dielectric composite structure. Appl Opt 2022;61:683. [DOI: 10.1364/ao.446579] [Reference Citation Analysis]
2 Khodasevych I, Rufangura P, Iacopi F. Designing concentric nanoparticles for surface-enhanced light-matter interaction in the mid-infrared. Opt Express 2022;30:24118. [DOI: 10.1364/oe.462117] [Reference Citation Analysis]
3 Asghari A, Wang C, Yoo KM, Rostamian A, Xu X, Shin JD, Dalir H, Chen RT. Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: Opportunities and challenges. Appl Phys Rev 2021;8:031313. [PMID: 34552683 DOI: 10.1063/5.0022211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Drozd M, Karoń S, Malinowska E. Recent Advancements in Receptor Layer Engineering for Applications in SPR-Based Immunodiagnostics. Sensors (Basel) 2021;21:3781. [PMID: 34072572 DOI: 10.3390/s21113781] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Liu YQ, Ren Z, Yin H, Sun J, Li L. Dispersion Theory of Surface Plasmon Polaritons on Bilayer Graphene Metasurfaces. Nanomaterials (Basel) 2022;12:1804. [PMID: 35683660 DOI: 10.3390/nano12111804] [Reference Citation Analysis]
6 Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021;6:3841-81. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
7 Nguyen V. Temperature and inhomogeneity combination effects on collective excitations in three-layer graphene structures. Physica E: Low-dimensional Systems and Nanostructures 2022;140:115201. [DOI: 10.1016/j.physe.2022.115201] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Van Men N, Kim Phuong DT. Temperature effects on plasmon modes in double-bilayer graphene structures. Solid State Communications 2021;334-335:114398. [DOI: 10.1016/j.ssc.2021.114398] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). Nanomaterials (Basel) 2021;11:2525. [PMID: 34684966 DOI: 10.3390/nano11102525] [Reference Citation Analysis]
10 Chang CC. Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies. Biosensors (Basel) 2021;11:233. [PMID: 34356703 DOI: 10.3390/bios11070233] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Yu F, Li J, Jiang Y, Wang L, Yang X, Li X, Lü W, Sun X. Boosting Low-Temperature Resistance of Energy Storage Devices by Photothermal Conversion Effects. ACS Appl Mater Interfaces 2022. [PMID: 35536010 DOI: 10.1021/acsami.2c03124] [Reference Citation Analysis]
12 Men NV. Plasmon modes inN-layer silicene structures. J Phys Condens Matter 2021;34. [PMID: 34814116 DOI: 10.1088/1361-648X/ac3c66] [Reference Citation Analysis]
13 Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. Adv Mater 2022;34:e2107876. [PMID: 34913206 DOI: 10.1002/adma.202107876] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Zhang Z, Lee Y, Haque MF, Leem J, Hsieh EY, Nam S. Plasmonic sensors based on graphene and graphene hybrid materials. Nano Converg 2022;9:28. [PMID: 35695997 DOI: 10.1186/s40580-022-00319-5] [Reference Citation Analysis]
15 Nguyen V. Coulomb potentials in 5-layer graphene structures: inhomogeneity effects. Indian J Phys. [DOI: 10.1007/s12648-022-02302-6] [Reference Citation Analysis]
16 Lu X, Damborský P, Munief W, Ka-yan Law J, Chen X, Katrlík J, Pachauri V, Ingebrandt S. Electrical SPR biosensor with thermal annealed graphene oxide: Concept of highly sensitive biomolecule detection. Biosensors and Bioelectronics: X 2022;11:100152. [DOI: 10.1016/j.biosx.2022.100152] [Reference Citation Analysis]
17 Jia Y, Liao Y, Cai H. Sensitivity Improvement of Surface Plasmon Resonance Biosensors with GeS-Metal Layers. Electronics 2022;11:332. [DOI: 10.3390/electronics11030332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Liu B, Yu W, Yan Z, Cai P, Gao F, Tang C, Gu P, Liu Z, Chen J. The Light Absorption Enhancement in Graphene Monolayer Resulting from the Diffraction Coupling of Surface Plasmon Polariton Resonance. Nanomaterials (Basel) 2022;12:216. [PMID: 35055234 DOI: 10.3390/nano12020216] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Radhakrishnan S, Mathew M, Rout CS. Microfluidic sensors based on two-dimensional materials for chemical and biological assessments. Mater Adv 2022;3:1874-904. [DOI: 10.1039/d1ma00929j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Hashim HS, Fen YW, Omar NAS, Fauzi NIM. Sensing Methods for Hazardous Phenolic Compounds Based on Graphene and Conducting Polymers-Based Materials. Chemosensors 2021;9:291. [DOI: 10.3390/chemosensors9100291] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]