BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fazle Rabbee M, Baek KH. Antimicrobial Activities of Lipopeptides and Polyketides of Bacillus velezensis for Agricultural Applications. Molecules 2020;25:E4973. [PMID: 33121115 DOI: 10.3390/molecules25214973] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Y, Zhao M, Chen W, Yu H, Jia W, Pan H, Zhang X. Multi-Omics Techniques for Analysis Antifungal Mechanisms of Lipopeptides Produced by Bacillus velezensis GS-1 against Magnaporthe oryzae In Vitro. Int J Mol Sci 2022;23:3762. [PMID: 35409115 DOI: 10.3390/ijms23073762] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Liu W, Wang J, Li S, Zhang H, Meng L, Liu L, Ping W, Du C. Genomic and Biocontrol Potential of the Crude Lipopeptide by Streptomyces bikiniensis HD-087 Against Magnaporthe oryzae. Front Microbiol 2022;13:888645. [PMID: 35756060 DOI: 10.3389/fmicb.2022.888645] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Cao X, Li Y, Fan J, Zhao Y, Borriss R, Fan B. Two Lysine Sites That Can Be Malonylated Are Important for LuxS Regulatory Roles in Bacillus velezensis. Microorganisms 2021;9:1338. [PMID: 34205485 DOI: 10.3390/microorganisms9061338] [Reference Citation Analysis]
4 Diale MO, Kayitesi E, Serepa-Dlamini MH. Genome In Silico and In Vitro Analysis of the Probiotic Properties of a Bacterial Endophyte, Bacillus Paranthracis Strain MHSD3. Front Genet 2021;12:672149. [PMID: 34858466 DOI: 10.3389/fgene.2021.672149] [Reference Citation Analysis]
5 Shin JH, Park BS, Kim HY, Lee KH, Kim KS. Antagonistic and Plant Growth-Promoting Effects of Bacillus velezensis BS1 Isolated from Rhizosphere Soil in a Pepper Field. Plant Pathol J 2021;37:307-14. [PMID: 34111920 DOI: 10.5423/PPJ.NT.03.2021.0053] [Reference Citation Analysis]
6 Rani A, Saini KC, Bast F, Varjani S, Mehariya S, Bhatia SK, Sharma N, Funk C. A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules 2021;11:1860. [PMID: 34944505 DOI: 10.3390/biom11121860] [Reference Citation Analysis]
7 Balderas-Ruíz KA, Gómez-Guerrero CI, Trujillo-Roldán MA, Valdez-Cruz NA, Aranda-Ocampo S, Juárez AM, Leyva E, Galindo E, Serrano-Carreón L. Bacillus velezensis 83 increases productivity and quality of tomato (Solanum lycopersicum L.): Pre and postharvest assessment. Curr Res Microb Sci 2021;2:100076. [PMID: 34841365 DOI: 10.1016/j.crmicr.2021.100076] [Reference Citation Analysis]
8 Ngalimat MS, Yahaya RSR, Baharudin MMA, Yaminudin SM, Karim M, Ahmad SA, Sabri S. A Review on the Biotechnological Applications of the Operational Group Bacillus amyloliquefaciens. Microorganisms 2021;9:614. [PMID: 33802666 DOI: 10.3390/microorganisms9030614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
9 Wang X, Onchari M, Yang X, Xu L, Yin X, Wan F, Chen Y, Guan M, Li B, Luo C. Genome analysis of Bacillus subtilis JCL16 and the synergistic relationship among its metabolites reveal its potential for biocontrol of Nocardia seriolae. Biological Control 2022;167:104855. [DOI: 10.1016/j.biocontrol.2022.104855] [Reference Citation Analysis]
10 Clarke J, Grogan H, Fitzpatrick D, Kavanagh K. Analysis of the effect of Bacillus velezensis culture filtrate on the growth and proteome of Cladobotryum mycophilum. Fungal Biol 2022;126:11-9. [PMID: 34930555 DOI: 10.1016/j.funbio.2021.09.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Wu JJ, Chou HP, Huang JW, Deng WL. Genomic and biochemical characterization of antifungal compounds produced by Bacillus subtilis PMB102 against Alternaria brassicicola. Microbiol Res 2021;251:126815. [PMID: 34284299 DOI: 10.1016/j.micres.2021.126815] [Reference Citation Analysis]
12 Lu H, Xu H, Yang P, Bilal M, Zhu S, Zhong M, Zhao L, Gu C, Liu S, Zhao Y, Geng C. Transcriptome Analysis of Bacillus amyloliquefaciens Reveals Fructose Addition Effects on Fengycin Synthesis. Genes 2022;13:984. [DOI: 10.3390/genes13060984] [Reference Citation Analysis]
13 Islam T, Rabbee MF, Choi J, Baek K. Biosynthesis, Molecular Regulation, and Application of Bacilysin Produced by Bacillus Species. Metabolites 2022;12:397. [DOI: 10.3390/metabo12050397] [Reference Citation Analysis]
14 Wang SY, Herrera-Balandrano DD, Wang YX, Shi XC, Chen X, Jin Y, Liu FQ, Laborda P. Biocontrol Ability of the Bacillus amyloliquefaciens Group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the Management of Fungal Postharvest Diseases: A Review. J Agric Food Chem 2022;70:6591-616. [PMID: 35604328 DOI: 10.1021/acs.jafc.2c01745] [Reference Citation Analysis]