1 |
Cui Y, Huo Y, Li Z, Qiu Y, Yang Q, Chen Z, Fan S, Huang X, Hao J, Kang L, Liang G. VEGF-targeted scFv inhibits corneal neovascularization via STAT3 pathway in alkali burn model. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.130764] [Reference Citation Analysis]
|
2 |
Wilson SE. Magic Bullets: The Coming Age of Meaningful Pharmacological Control of the Corneal Responses to Injury and Disease. J Ocul Pharmacol Ther 2022. [PMID: 36161879 DOI: 10.1089/jop.2022.0088] [Reference Citation Analysis]
|
3 |
Luo Q, Yang J, Xu H, Shi J, Liang Z, Zhang R, Lu P, Pu G, Zhao N, Zhang J. Sorafenib-loaded nanostructured lipid carriers for topical ocular therapy of corneal neovascularization: development, in-vitro and in vivo study. Drug Delivery 2022;29:837-55. [DOI: 10.1080/10717544.2022.2048134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
4 |
Wang JH, Tseng CL, Lin FL, Chen J, Hsieh EH, Lama S, Chuang YF, Kumar S, Zhu L, McGuinness MB, Hernandez J, Tu L, Wang PY, Liu GS. Topical application of TAK1 inhibitor encapsulated by gelatin particle alleviates corneal neovascularization. Theranostics 2022;12:657-74. [PMID: 34976206 DOI: 10.7150/thno.65098] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
5 |
Chen J, Ding X, Du W, Tang X, Yu WZ. Inhibition of corneal neovascularization by topical application of nintedanib in rabbit models. Int J Ophthalmol 2021;14:1666-73. [PMID: 34804855 DOI: 10.18240/ijo.2021.11.04] [Reference Citation Analysis]
|
6 |
Yoo SW, Oh G, Ahn JC, Chung E. Non-Oncologic Applications of Nanomedicine-Based Phototherapy. Biomedicines 2021;9:113. [PMID: 33504015 DOI: 10.3390/biomedicines9020113] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|