BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Day CM, Hickey SM, Song Y, Plush SE, Garg S. Novel Tamoxifen Nanoformulations for Improving Breast Cancer Treatment: Old Wine in New Bottles. Molecules. 2020;25. [PMID: 32151063 DOI: 10.3390/molecules25051182] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Chao X, Zhao L, Ma N, Mou Y, Zhang P. Nanotechnology-based drug delivery systems for the improved sensitization of tamoxifen. Journal of Drug Delivery Science and Technology 2021;61:102229. [DOI: 10.1016/j.jddst.2020.102229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Nokhodi F, Nekoei M, Goodarzi MT. Hyaluronic acid-coated chitosan nanoparticles as targeted-carrier of tamoxifen against MCF7 and TMX-resistant MCF7 cells. J Mater Sci Mater Med 2022;33:24. [PMID: 35157166 DOI: 10.1007/s10856-022-06647-6] [Reference Citation Analysis]
3 Mahmoud MA, Okda TM, Omran GA, Abd-Alhaseeb MM. Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p53-caspase-3 pathways modulation. J Appl Biomed 2021;19:202-9. [PMID: 34907739 DOI: 10.32725/jab.2021.024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Segovia-mendoza M, Palacios-arreola MI, Monroy-escamilla LM, Soto-piña AE, Nava-castro KE, Becerril-alarcón Y, Camacho-beiza R, Aguirre-quezada DE, Cardoso-peña E, Amador-muñoz O, Garduño-garcía JDJ, Morales-montor J. Association of Serum Levels of Plasticizers Compounds, Phthalates and Bisphenols, in Patients and Survivors of Breast Cancer: A Real Connection? IJERPH 2022;19:8040. [DOI: 10.3390/ijerph19138040] [Reference Citation Analysis]
5 Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020;25:E5938. [PMID: 33333989 DOI: 10.3390/molecules25245938] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Tagde P, Najda A, Nagpal K, Kulkarni GT, Shah M, Ullah O, Balant S, Rahman MH. Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. IJMS 2022;23:2856. [DOI: 10.3390/ijms23052856] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Day CM, Sweetman MJ, Hickey SM, Song Y, Liu Y, Zhang N, Plush SE, Garg S. Concept Design, Development and Preliminary Physical and Chemical Characterization of Tamoxifen-Guided-Mesoporous Silica Nanoparticles. Molecules 2021;26:E219. [PMID: 33406699 DOI: 10.3390/molecules26010219] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Martín-contreras M, Navarro-marchal SA, Peula-garcía JM, Jódar-reyes AB. Progress and Hurdles of Therapeutic Nanosystems against Cancer. Pharmaceutics 2022;14:388. [DOI: 10.3390/pharmaceutics14020388] [Reference Citation Analysis]
9 Sheikh A, Md S, Alhakamy NA, Kesharwani P. Recent development of aptamer conjugated chitosan nanoparticles as cancer therapeutics. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121751] [Reference Citation Analysis]
10 Fatfat Z, Fatfat M, Gali-Muhtasib H. Therapeutic potential of thymoquinone in combination therapy against cancer and cancer stem cells. World J Clin Oncol 2021; 12(7): 522-543 [PMID: 34367926 DOI: 10.5306/wjco.v12.i7.522] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Mojeiko G, Passos JS, Apolinário AC, Lopes LB. Topical transdermal chemoprevention of breast cancer: where will nanomedical approaches deliver us? Nanomedicine (Lond) 2021;16:1713-31. [PMID: 34256574 DOI: 10.2217/nnm-2021-0130] [Reference Citation Analysis]
12 Popova M, Koseva N, Trendafilova I, Lazarova H, Mitova V, Mihály J, Momekova D, Momekov G, Koleva IZ, Aleksandrov HA, Vayssilov GN, Szegedi Á. Tamoxifen Delivery System Based on PEGylated Magnetic MCM-41 Silica. Molecules 2020;25:E5129. [PMID: 33158297 DOI: 10.3390/molecules25215129] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Alhusban AA, Albustanji S, Hamadneh LA, Shallan AI. High Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Correlating the Metabolic Changes of Lactate, Pyruvate and L-Glutamine with Induced Tamoxifen Resistant MCF-7 Cell Line Potential Molecular Changes. Molecules 2021;26:4824. [PMID: 34443413 DOI: 10.3390/molecules26164824] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Akbarzadeh I, Farid M, Javidfar M, Zabet N, Shokoohian B, Arki MK, Shpichka A, Noorbazargan H, Aghdaei HA, Hossein-Khannazer N, Timashev P, Makvandi P, Vosough M. The Optimized Formulation of Tamoxifen-Loaded Niosomes Efficiently Induced Apoptosis and Cell Cycle Arrest in Breast Cancer Cells. AAPS PharmSciTech 2022;23:57. [PMID: 35048234 DOI: 10.1208/s12249-022-02212-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Day CM, Sweetman MJ, Song Y, Plush SE, Garg S. Functionalized Mesoporous Silica Nanoparticles as Delivery Systems for Doxorubicin: Drug Loading and Release. Applied Sciences 2021;11:6121. [DOI: 10.3390/app11136121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Moin A, Wani SUD, Osmani RA, Abu Lila AS, Khafagy ES, Arab HH, Gangadharappa HV, Allam AN. Formulation, characterization, and cellular toxicity assessment of tamoxifen-loaded silk fibroin nanoparticles in breast cancer. Drug Deliv 2021;28:1626-36. [PMID: 34328806 DOI: 10.1080/10717544.2021.1958106] [Reference Citation Analysis]
17 Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020;12:E524. [PMID: 32521684 DOI: 10.3390/pharmaceutics12060524] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
18 Abdallah ME, El-Readi MZ, Althubiti MA, Almaimani RA, Ismail AM, Idris S, Refaat B, Almalki WH, Babakr AT, Mukhtar MH, Abdalla AN, Idris OF. Tamoxifen and the PI3K Inhibitor: LY294002 Synergistically Induce Apoptosis and Cell Cycle Arrest in Breast Cancer MCF-7 Cells. Molecules 2020;25:E3355. [PMID: 32722075 DOI: 10.3390/molecules25153355] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
19 Zhen X, Choi HS, Kim JH, Kim SL, Liu R, Ko YC, Yun BS, Lee DS. Caudatin Isolated from Cynanchum auriculatum Inhibits Breast Cancer Stem Cell Formation via a GR/YAP Signaling. Biomolecules 2020;10:E925. [PMID: 32570844 DOI: 10.3390/biom10060925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Liu J, Dai Z, Li M, Wang B, Zhang X, Li F, Zhang M, Zhang W. Circular RNA circMET contributes to tamoxifen resistance of breast cancer cells by targeting miR-204/AHR signaling. Biochemical and Biophysical Research Communications 2022. [DOI: 10.1016/j.bbrc.2022.07.097] [Reference Citation Analysis]
21 Silva Rocha F, da Silva Maués JH, Brito Lins Pereira CM, Moreira-Nunes CA, Rodriguez Burbano RM. Analysis of Increased EGFR and IGF-1R Signaling and Its Correlation with Socio-Epidemiological Features and Biological Profile in Breast Cancer Patients: A Study in Northern Brazil. Breast Cancer (Dove Med Press) 2021;13:325-39. [PMID: 34054308 DOI: 10.2147/BCTT.S308554] [Reference Citation Analysis]