BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Toohey JI, Cooper AJ. Thiosulfoxide (sulfane) sulfur: new chemistry and new regulatory roles in biology. Molecules 2014;19:12789-813. [PMID: 25153879 DOI: 10.3390/molecules190812789] [Cited by in Crossref: 99] [Cited by in F6Publishing: 90] [Article Influence: 12.4] [Reference Citation Analysis]
Number Citing Articles
1 Kasamatsu S, Ihara H. Regulation of redox signaling by reactive sulfur species. J Clin Biochem Nutr 2021;68:111-5. [PMID: 33879961 DOI: 10.3164/jcbn.20-124] [Reference Citation Analysis]
2 Gong X, Yang X, Zhong Y, Chen H, Li Z. A flavylium-based turn-on fluorescent probe for imaging hydrogen polysulfides in living cells. RSC Adv 2016;6:88519-25. [DOI: 10.1039/c6ra21145c] [Cited by in Crossref: 21] [Article Influence: 3.5] [Reference Citation Analysis]
3 Sokrateva TD, Roussev BH, Nashar MA, Kiselova-Kaneva YD, Mihaylova GM, Todorova MN, Pasheva MG, Tasinov OB, Nazifova-Tasinova NF, Vankova DG, Ivanova DP, Radanova MA, Ts Galunska B, Vlaykova TI, Ivanova DG. Effects of sulphur-containing mineral water intake on oxidative status and markers for inflammation in healthy subjects. Arch Physiol Biochem 2021;127:327-36. [PMID: 31291758 DOI: 10.1080/13813455.2019.1638416] [Reference Citation Analysis]
4 Morales-López J, Centeno-Álvarez M, Nieto-Camacho A, López MG, Pérez-Hernández E, Pérez-Hernández N, Fernández-Martínez E. Evaluation of antioxidant and hepatoprotective effects of white cabbage essential oil. Pharm Biol 2017;55:233-41. [PMID: 27927070 DOI: 10.1080/13880209.2016.1258424] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
5 Serezhenkov VA, Tkachev NA, Semenyuk YP, Kurbatov SV, Kharchenko EY, Chistyakov VA. Nitrobenzoxadiazole derivatives as nitric oxide donors: ESR study using spin trapping. Russ Chem Bull 2017;66:76-82. [DOI: 10.1007/s11172-017-1702-2] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
6 Tomasova L, Drapala A, Jurkowska H, Wróbel M, Ufnal M. Na2S, a fast-releasing H2S donor, given as suppository lowers blood pressure in rats. Pharmacol Rep 2017;69:971-7. [PMID: 28822959 DOI: 10.1016/j.pharep.2017.03.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
7 Olson KR, Gao Y, Arif F, Arora K, Patel S, DeLeon ER, Sutton TR, Feelisch M, Cortese-Krott MM, Straub KD. Metabolism of hydrogen sulfide (H2S) and Production of Reactive Sulfur Species (RSS) by superoxide dismutase. Redox Biol 2018;15:74-85. [PMID: 29220697 DOI: 10.1016/j.redox.2017.11.009] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 16.4] [Reference Citation Analysis]
8 Weikum J, Ritzmann N, Jelden N, Klöckner A, Herkersdorf S, Josten M, Sahl HG, Grein F. Sulfide Protects Staphylococcus aureus from Aminoglycoside Antibiotics but Cannot Be Regarded as a General Defense Mechanism against Antibiotics. Antimicrob Agents Chemother 2018;62:e00602-18. [PMID: 30061290 DOI: 10.1128/AAC.00602-18] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
9 Cortese-krott MM, Fernandez BO, Kelm M, Butler AR, Feelisch M. On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide 2015;46:14-24. [DOI: 10.1016/j.niox.2014.12.009] [Cited by in Crossref: 76] [Cited by in F6Publishing: 62] [Article Influence: 10.9] [Reference Citation Analysis]
10 Kawano Y, Suzuki K, Ohtsu I. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms. Appl Microbiol Biotechnol 2018;102:8203-11. [PMID: 30046857 DOI: 10.1007/s00253-018-9246-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
11 Kevil C, Cortese-krott MM, Nagy P, Papapetropoulos A, Feelisch M, Szabo C. Cooperative Interactions Between NO and H 2 S: Chemistry, Biology, Physiology, Pathophysiology. Nitric Oxide. Elsevier; 2017. pp. 57-83. [DOI: 10.1016/b978-0-12-804273-1.00005-3] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
12 Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu ZY, Bian JS. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol 2021;38:101813. [PMID: 33279869 DOI: 10.1016/j.redox.2020.101813] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
13 Carroll L, Davies MJ, Pattison DI. Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants. Free Radic Res 2015;49:750-67. [PMID: 25854915 DOI: 10.3109/10715762.2015.1018247] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
14 Li J, Wang P, Pei Y. From Monolayer-Protected Gold Cluster to Monolayer-Protected Gold-Sulfide Cluster: Geometrical and Electronic Structure Evolutions of Au60S n (SR)36 (n = 0-12). ACS Omega 2020;5:16901-11. [PMID: 32685859 DOI: 10.1021/acsomega.0c02091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Wang Q, Li H, Xia Y, Xun L, Liu H. Saccharomyces cerevisiae Rhodanese RDL2 Uses the Arg Residue of the Active-Site Loop for Thiosulfate Decomposition. Antioxidants (Basel) 2021;10:1525. [PMID: 34679660 DOI: 10.3390/antiox10101525] [Reference Citation Analysis]
16 Giles GI, Nasim MJ, Ali W, Jacob C. The Reactive Sulfur Species Concept: 15 Years On. Antioxidants (Basel) 2017;6:E38. [PMID: 28545257 DOI: 10.3390/antiox6020038] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 8.2] [Reference Citation Analysis]
17 Goncharov N, Orekhov AN, Voitenko N, Ukolov A, Jenkins R, Avdonin P. Organosulfur Compounds as Nutraceuticals. Nutraceuticals. Elsevier; 2016. pp. 555-68. [DOI: 10.1016/b978-0-12-802147-7.00041-3] [Cited by in Crossref: 11] [Article Influence: 1.8] [Reference Citation Analysis]
18 Yamasaki H, Cohen MF. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies. Nitric Oxide 2016;55-56:91-100. [DOI: 10.1016/j.niox.2016.04.002] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 8.2] [Reference Citation Analysis]
19 Bronowicka-Adamska P, Wróbel M, Magierowski M, Magierowska K, Kwiecień S, Brzozowski T. Hydrogen Sulphide Production in Healthy and Ulcerated Gastric Mucosa of Rats. Molecules 2017;22:E530. [PMID: 28346391 DOI: 10.3390/molecules22040530] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
20 Wang X, Sun Q, Zhao L, Gong S, Xu L. Visualization of hydrogen polysulfides in living cells and in vivo via a near-infrared fluorescent probe. J Biol Inorg Chem 2019;24:1077-85. [PMID: 31515622 DOI: 10.1007/s00775-019-01718-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
21 Bełtowski J. Hydrogen sulfide in pharmacology and medicine – An update. Pharmacological Reports 2015;67:647-58. [DOI: 10.1016/j.pharep.2015.01.005] [Cited by in Crossref: 92] [Cited by in F6Publishing: 85] [Article Influence: 13.1] [Reference Citation Analysis]
22 DeLeon ER, Gao Y, Huang E, Olson KR. Garlic oil polysulfides: H2S- and O2-independent prooxidants in buffer and antioxidants in cells. Am J Physiol Regul Integr Comp Physiol 2016;310:R1212-25. [PMID: 27101293 DOI: 10.1152/ajpregu.00061.2016] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
23 Islam RK, Donnelly E, Islam KN. Circulating Hydrogen Sulfide (H2S) and Nitric Oxide (NO) Levels Are Significantly Reduced in HIV Patients Concomitant with Increased Oxidative Stress Biomarkers. J Clin Med 2021;10:4460. [PMID: 34640478 DOI: 10.3390/jcm10194460] [Reference Citation Analysis]
24 Hou Y, Yang X, Zhong Y, Li Z. Development of fluorescent probes for hydrogen polysulfides by using cinnamate ester as the recognition unit. Sensors and Actuators B: Chemical 2016;232:531-7. [DOI: 10.1016/j.snb.2016.04.008] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
25 Braunstein I, Engelman R, Yitzhaki O, Ziv T, Galardon E, Benhar M. Opposing effects of polysulfides and thioredoxin on apoptosis through caspase persulfidation. J Biol Chem 2020;295:3590-600. [PMID: 32041780 DOI: 10.1074/jbc.RA119.012357] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
26 Echizen H, Sasaki E, Hanaoka K. Recent Advances in Detection, Isolation, and Imaging Techniques for Sulfane Sulfur-Containing Biomolecules. Biomolecules 2021;11:1553. [PMID: 34827552 DOI: 10.3390/biom11111553] [Reference Citation Analysis]
27 Chen W, Rosser EW, Matsunaga T, Pacheco A, Akaike T, Xian M. The Development of Fluorescent Probes for Visualizing Intracellular Hydrogen Polysulfides. Angew Chem Int Ed Engl 2015;54:13961-5. [PMID: 26381762 DOI: 10.1002/anie.201506887] [Cited by in Crossref: 136] [Cited by in F6Publishing: 133] [Article Influence: 19.4] [Reference Citation Analysis]
28 Zhang X, Zhang L, Gao M, Wang Y, Chen L. A near-infrared fluorescent probe for observing thionitrous acid-mediated hydrogen polysulfides formation and fluctuation in cells and in vivo under hypoxia stress. Journal of Hazardous Materials 2020;396:122673. [DOI: 10.1016/j.jhazmat.2020.122673] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
29 Xiong J, Wang H, Yao J, He Q, Ma J, Yang J, Liu C, Chen Y, Huangfu X, Liu H. A critical review on sulfur reduction of aqueous selenite: Mechanisms and applications. J Hazard Mater 2021;422:126852. [PMID: 34399225 DOI: 10.1016/j.jhazmat.2021.126852] [Reference Citation Analysis]
30 Gui DD, Luo W, Yan BJ, Ren Z, Tang ZH, Liu LS, Zhang JF, Jiang ZS. Effects of gut microbiota on atherosclerosis through hydrogen sulfide. Eur J Pharmacol 2021;896:173916. [PMID: 33529724 DOI: 10.1016/j.ejphar.2021.173916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Olson KR. Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radic Biol Med 2019;140:74-83. [PMID: 30703482 DOI: 10.1016/j.freeradbiomed.2019.01.020] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
32 Olson KR. H2S and polysulfide metabolism: Conventional and unconventional pathways. Biochem Pharmacol 2018;149:77-90. [PMID: 29248597 DOI: 10.1016/j.bcp.2017.12.010] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 11.0] [Reference Citation Analysis]
33 Wróbel M, Góralska J, Jurkowska H, Sura P. Similar effect of sodium nitroprusside and acetylsalicylic acid on antioxidant system improvement in mouse liver but not in the brain. Biochimie 2017;135:181-5. [DOI: 10.1016/j.biochi.2017.02.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
34 Olson KR, Gao Y, DeLeon ER, Arif M, Arif F, Arora N, Straub KD. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biol 2017;12:325-39. [PMID: 28285261 DOI: 10.1016/j.redox.2017.02.021] [Cited by in Crossref: 77] [Cited by in F6Publishing: 72] [Article Influence: 15.4] [Reference Citation Analysis]
35 Iciek M, Kowalczyk-Pachel D, Bilska-Wilkosz A, Kwiecień I, Górny M, Włodek L. S-sulfhydration as a cellular redox regulation. Biosci Rep 2015;36:e00304. [PMID: 26607972 DOI: 10.1042/BSR20150147] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 4.9] [Reference Citation Analysis]
36 Ran M, Wang T, Shao M, Chen Z, Liu H, Xia Y, Xun L. Sensitive Method for Reliable Quantification of Sulfane Sulfur in Biological Samples. Anal Chem 2019;91:11981-6. [PMID: 31436086 DOI: 10.1021/acs.analchem.9b02875] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
37 She M, Jia CQ, Duan Y, Zhu C. Influence of Different Sulfur Forms on Gas-Phase Mercury Removal by SO 2 -Impregnated Porous Carbons. Energy Fuels 2020;34:2064-73. [DOI: 10.1021/acs.energyfuels.9b03648] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 6.5] [Reference Citation Analysis]
38 Olson KR, Gao Y, Steiger AK, Pluth MD, Tessier CR, Markel TA, Boone D, Stahelin RV, Batinic-Haberle I, Straubg KD. Effects of Manganese Porphyrins on Cellular Sulfur Metabolism. Molecules 2020;25:E980. [PMID: 32098303 DOI: 10.3390/molecules25040980] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
39 Searcy DG. Elemental sulfur reduction to H2S by Tetrahymena thermophila. Eur J Protistol 2018;62:56-68. [PMID: 29248819 DOI: 10.1016/j.ejop.2017.11.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
40 Liu H, Radford MN, Yang CT, Chen W, Xian M. Inorganic hydrogen polysulfides: chemistry, chemical biology and detection. Br J Pharmacol 2019;176:616-27. [PMID: 29669174 DOI: 10.1111/bph.14330] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
41 Ciocci M, Iorio E, Carotenuto F, Khashoggi HA, Nanni F, Melino S. H2S-releasing nanoemulsions: a new formulation to inhibit tumor cells proliferation and improve tissue repair. Oncotarget 2016;7:84338-58. [PMID: 27741519 DOI: 10.18632/oncotarget.12609] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
42 Galardon E, Padovani D. Reactivity of Persulfides Toward Strained Bicyclo[6.1.0]nonyne Derivatives: Relevance to Chemical Tagging of Proteins. Bioconjugate Chem 2015;26:1013-6. [DOI: 10.1021/acs.bioconjchem.5b00243] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
43 Jurkowska H, Wróbel M, Jasek-gajda E, Rydz L. Sulfurtransferases and Cystathionine Beta-Synthase Expression in Different Human Leukemia Cell Lines. Biomolecules 2022;12:148. [DOI: 10.3390/biom12020148] [Reference Citation Analysis]
44 Zhou H, Tang J, Sun L, Zhang J, Chen B, Kan J, Zhang W, Zhang J, Zhou J. H2S2-triggered off-on fluorescent indicator with endoplasmic reticulum targeting for imaging in cells and zebrafishes. Sensors and Actuators B: Chemical 2019;278:64-72. [DOI: 10.1016/j.snb.2018.09.081] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
45 Chen W, Rosser EW, Matsunaga T, Pacheco A, Akaike T, Xian M. The Development of Fluorescent Probes for Visualizing Intracellular Hydrogen Polysulfides. Angew Chem 2015;127:14167-71. [DOI: 10.1002/ange.201506887] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
46 Cortese-Krott MM, Kuhnle GG, Dyson A, Fernandez BO, Grman M, DuMond JF, Barrow MP, McLeod G, Nakagawa H, Ondrias K, Nagy P, King SB, Saavedra JE, Keefer LK, Singer M, Kelm M, Butler AR, Feelisch M. Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc Natl Acad Sci U S A 2015;112:E4651-60. [PMID: 26224837 DOI: 10.1073/pnas.1509277112] [Cited by in Crossref: 195] [Cited by in F6Publishing: 169] [Article Influence: 27.9] [Reference Citation Analysis]
47 Cortese-Krott MM, Butler AR, Woollins JD, Feelisch M. Inorganic sulfur-nitrogen compounds: from gunpowder chemistry to the forefront of biological signaling. Dalton Trans 2016;45:5908-19. [PMID: 26898846 DOI: 10.1039/c5dt05034k] [Cited by in Crossref: 51] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
48 Gao M, Wang R, Yu F, You J, Chen L. Imaging and evaluation of sulfane sulfur in acute brain ischemia using a mitochondria-targeted near-infrared fluorescent probe. J Mater Chem B 2018;6:2608-19. [DOI: 10.1039/c7tb03200e] [Cited by in Crossref: 20] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
49 Ma J, Fan J, Li H, Yao Q, Xu F, Wang J, Peng X. A NIR fluorescent chemodosimeter for imaging endogenous hydrogen polysulfides via the CSE enzymatic pathway. J Mater Chem B 2017;5:2574-9. [DOI: 10.1039/c7tb00098g] [Cited by in Crossref: 35] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
50 Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol 2017;312:C3-C15. [PMID: 27784679 DOI: 10.1152/ajpcell.00282.2016] [Cited by in Crossref: 87] [Cited by in F6Publishing: 84] [Article Influence: 14.5] [Reference Citation Analysis]
51 Merz T, Mccook O, Brucker C, Waller C, Calzia E, Radermacher P, Datzmann T. H2S in Critical Illness—A New Horizon for Sodium Thiosulfate? Biomolecules 2022;12:543. [DOI: 10.3390/biom12040543] [Reference Citation Analysis]
52 Kılıç H. Experiment-based physicochemical aspects for the coulombic hydration kinetics and thermodynamics of a pyrimidine and thiopyrimidine. Journal of Molecular Liquids 2018;266:443-52. [DOI: 10.1016/j.molliq.2018.06.090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
53 De Cicco P, Sanders T, Cirino G, Maloy KJ, Ianaro A. Hydrogen Sulfide Reduces Myeloid-Derived Suppressor Cell-Mediated Inflammatory Response in a Model of Helicobacter hepaticus-Induced Colitis. Front Immunol 2018;9:499. [PMID: 29636751 DOI: 10.3389/fimmu.2018.00499] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
54 Takano Y, Shimamoto K, Hanaoka K. Chemical tools for the study of hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies. J Clin Biochem Nutr 2016;58:7-15. [PMID: 26798192 DOI: 10.3164/jcbn.15-91] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
55 Baseggio Conrado A, Capuozzo E, Mosca L, Francioso A, Fontana M. Thiotaurine: From Chemical and Biological Properties to Role in H2S Signaling. In: Hu J, Piao F, Schaffer SW, El Idrissi A, Wu J, editors. Taurine 11. Singapore: Springer; 2019. pp. 755-71. [DOI: 10.1007/978-981-13-8023-5_66] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Vojtovič D, Luhová L, Petřivalský M. Something smells bad to plant pathogens: Production of hydrogen sulfide in plants and its role in plant defence responses. J Adv Res 2021;27:199-209. [PMID: 33318878 DOI: 10.1016/j.jare.2020.09.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
57 Han X, Song X, Li B, Yu F, Chen L. A near-infrared fluorescent probe for sensitive detection and imaging of sulfane sulfur in living cells and in vivo. Biomater Sci 2018;6:672-82. [PMID: 29431773 DOI: 10.1039/c7bm00951h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 3.8] [Reference Citation Analysis]
58 Cai YR, Hu CH. Computational Study of H2S Release in Reactions of Diallyl Polysulfides with Thiols. J Phys Chem B 2017;121:6359-66. [PMID: 28609097 DOI: 10.1021/acs.jpcb.7b03683] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 6.2] [Reference Citation Analysis]
59 Hensley K, Denton TT. Alternative functions of the brain transsulfuration pathway represent an underappreciated aspect of brain redox biochemistry with significant potential for therapeutic engagement. Free Radic Biol Med 2015;78:123-34. [PMID: 25463282 DOI: 10.1016/j.freeradbiomed.2014.10.581] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
60 Štarha P, Trávníček Z, Vančo J, Dvořák Z. Half-Sandwich Ru(II) and Os(II) Bathophenanthroline Complexes Containing a Releasable Dichloroacetato Ligand. Molecules 2018;23:E420. [PMID: 29443934 DOI: 10.3390/molecules23020420] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
61 Bildziukevich U, Rárová L, Janovská L, Šaman D, Wimmer Z. Enhancing effect of cystamine in its amides with betulinic acid as antimicrobial and antitumor agent in vitro. Steroids 2019;148:91-8. [DOI: 10.1016/j.steroids.2019.04.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
62 Xie P, Zhu Y, Wang Y, Gao G, Jiang S, Guo F. A fluorescent probe for discrimination of cysteine/homocysteine, glutathione and hydrogen polysulfides. Res Chem Intermed 2021;47:1123-38. [DOI: 10.1007/s11164-020-04320-7] [Reference Citation Analysis]
63 Olson KR. Are Reactive Sulfur Species the New Reactive Oxygen Species? Antioxid Redox Signal 2020;33:1125-42. [PMID: 32586118 DOI: 10.1089/ars.2020.8132] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
64 Chen W, Rosser EW, Zhang D, Shi W, Li Y, Dong WJ, Ma H, Hu D, Xian M. A specific nucleophilic ring-opening reaction of aziridines as a unique platform for the construction of hydrogen polysulfides sensors. Org Lett 2015;17:2776-9. [PMID: 25961957 DOI: 10.1021/acs.orglett.5b01194] [Cited by in Crossref: 73] [Cited by in F6Publishing: 63] [Article Influence: 10.4] [Reference Citation Analysis]
65 Zeng X, Zhang X, Shao Z. Metabolic Adaptation to Sulfur of Hyperthermophilic Palaeococcus pacificus DY20341T from Deep-Sea Hydrothermal Sediments. Int J Mol Sci 2020;21:E368. [PMID: 31935923 DOI: 10.3390/ijms21010368] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
66 Kasamatsu S, Nishimura A, Morita M, Matsunaga T, Abdul Hamid H, Akaike T. Redox Signaling Regulated by Cysteine Persulfide and Protein Polysulfidation. Molecules 2016;21:E1721. [PMID: 27983699 DOI: 10.3390/molecules21121721] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 7.2] [Reference Citation Analysis]
67 Li K, Xin Y, Xuan G, Zhao R, Liu H, Xia Y, Xun L. Escherichia coli Uses Separate Enzymes to Produce H2S and Reactive Sulfane Sulfur From L-cysteine. Front Microbiol 2019;10:298. [PMID: 30873134 DOI: 10.3389/fmicb.2019.00298] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
68 Bhuiyan AI, Papajani VT, Paci M, Melino S. Glutathione-garlic sulfur conjugates: slow hydrogen sulfide releasing agents for therapeutic applications. Molecules 2015;20:1731-50. [PMID: 25608858 DOI: 10.3390/molecules20011731] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 4.9] [Reference Citation Analysis]
69 Pedre B, Dick TP. 3-Mercaptopyruvate sulfurtransferase: an enzyme at the crossroads of sulfane sulfur trafficking. Biol Chem 2021;402:223-37. [PMID: 33055309 DOI: 10.1515/hsz-2020-0249] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
70 Li H, Liu H, Chen Z, Zhao R, Wang Q, Ran M, Xia Y, Hu X, Liu J, Xian M, Xun L. Using resonance synchronous spectroscopy to characterize the reactivity and electrophilicity of biologically relevant sulfane sulfur. Redox Biol 2019;24:101179. [PMID: 30939430 DOI: 10.1016/j.redox.2019.101179] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
71 Nagahara N, Wróbel M. Atomic Sulfur: An Element for Adaptation to an Oxidative Environment. Molecules 2017;22:E1821. [PMID: 29072603 DOI: 10.3390/molecules22111821] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
72 Gao M, Wang R, Yu F, Li B, Chen L. Imaging of intracellular sulfane sulfur expression changes under hypoxic stress via a selenium-containing near-infrared fluorescent probe. J Mater Chem B 2018;6:6637-45. [PMID: 32254872 DOI: 10.1039/c8tb01794h] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
73 Yuan S, Shen X, Kevil CG. Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. Antioxid Redox Signal 2017;27:634-53. [PMID: 28398086 DOI: 10.1089/ars.2017.7096] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 8.6] [Reference Citation Analysis]
74 Gronow M. Isolation and analysis of a non-protein low molecular weight thiol-mercurial adduct from human prostate lymph node cells (LNCaP). Biosci Rep 2020;40:BSR20201343. [PMID: 32495828 DOI: 10.1042/BSR20201343] [Reference Citation Analysis]
75 Olson KR, Gao Y. Effects of inhibiting antioxidant pathways on cellular hydrogen sulfide and polysulfide metabolism. Free Radic Biol Med 2019;135:1-14. [PMID: 30790656 DOI: 10.1016/j.freeradbiomed.2019.02.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
76 Gao M, Wang R, Yu F, Chen L. Evaluation of sulfane sulfur bioeffects via a mitochondria-targeting selenium-containing near-infrared fluorescent probe. Biomaterials 2018;160:1-14. [DOI: 10.1016/j.biomaterials.2018.01.011] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 12.8] [Reference Citation Analysis]
77 Tomasova L, Dobrowolski L, Jurkowska H, Wróbel M, Huc T, Ondrias K, Ostaszewski R, Ufnal M. Intracolonic hydrogen sulfide lowers blood pressure in rats. Nitric Oxide 2016;60:50-8. [DOI: 10.1016/j.niox.2016.09.007] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 9.0] [Reference Citation Analysis]
78 Kumagai Y, Abiko Y. Environmental Electrophiles: Protein Adducts, Modulation of Redox Signaling, and Interaction with Persulfides/Polysulfides. Chem Res Toxicol 2017;30:203-19. [DOI: 10.1021/acs.chemrestox.6b00326] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
79 Chinchilla D, Bruisson S, Meyer S, Zühlke D, Hirschfeld C, Joller C, L'Haridon F, Mène-Saffrané L, Riedel K, Weisskopf L. A sulfur-containing volatile emitted by potato-associated bacteria confers protection against late blight through direct anti-oomycete activity. Sci Rep 2019;9:18778. [PMID: 31889050 DOI: 10.1038/s41598-019-55218-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
80 Bunik VI. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxidants & Redox Signaling 2019;30:1911-47. [DOI: 10.1089/ars.2017.7311] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
81 Collingwood JF, Adams F. Chemical imaging analysis of the brain with X-ray methods. Spectrochimica Acta Part B: Atomic Spectroscopy 2017;130:101-18. [DOI: 10.1016/j.sab.2017.02.013] [Cited by in Crossref: 41] [Cited by in F6Publishing: 13] [Article Influence: 8.2] [Reference Citation Analysis]
82 Bełtowski J, Jamroz-Wiśniewska A. Hydrogen sulfide and endothelium-dependent vasorelaxation. Molecules 2014;19:21183-99. [PMID: 25521118 DOI: 10.3390/molecules191221183] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 7.5] [Reference Citation Analysis]
83 Jurkowska H, Wróbel M, Kaczor-Kamińska M, Jasek-Gajda E. A possible mechanism of inhibition of U87MG and SH-SY5Y cancer cell proliferation by diallyl trisulfide and other aspects of its activity. Amino Acids 2017;49:1855-66. [PMID: 28852876 DOI: 10.1007/s00726-017-2484-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
84 Wróbel M, Czubak J, Bronowicka-Adamska P, Jurkowska H, Adamek D, Papla B. Is development of high-grade gliomas sulfur-dependent? Molecules 2014;19:21350-62. [PMID: 25532835 DOI: 10.3390/molecules191221350] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
85 Toohey JI. Possible Involvement of Hydrosulfide in B12-Dependent Methyl Group Transfer. Molecules 2017;22:E582. [PMID: 28379205 DOI: 10.3390/molecules22040582] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
86 She M, Duan Y, Zhu C, Jia CQ. Impact of Nonoxidized Sulfur Species on Elemental Mercury Removal by SO 2 Activated Petroleum Cokes. Energy Fuels 2020;34:14388-99. [DOI: 10.1021/acs.energyfuels.0c02577] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
87 Kılıç H. UV/vis spectrophotometric determination of slow equilibrated N(1)-H missing deprotonation constant of a pyrimidine and thiopyrimidine: The final situation of the four pKa values. Spectrochim Acta A Mol Biomol Spectrosc 2020;229:117867. [PMID: 31813720 DOI: 10.1016/j.saa.2019.117867] [Reference Citation Analysis]
88 Liu H, Fan K, Li H, Wang Q, Yang Y, Li K, Xia Y, Xun L. Synthetic Gene Circuits Enable Escherichia coli To Use Endogenous H 2 S as a Signaling Molecule for Quorum Sensing. ACS Synth Biol 2019;8:2113-20. [DOI: 10.1021/acssynbio.9b00210] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
89 Olson KR, Straub KD. The Role of Hydrogen Sulfide in Evolution and the Evolution of Hydrogen Sulfide in Metabolism and Signaling. Physiology 2016;31:60-72. [DOI: 10.1152/physiol.00024.2015] [Cited by in Crossref: 98] [Cited by in F6Publishing: 92] [Article Influence: 16.3] [Reference Citation Analysis]
90 Weng G, Yang B, Liu C, Du G, Li EY, Lu Y. Asymmetric allyl-activation of organosulfides for high-energy reversible redox flow batteries. Energy Environ Sci 2019;12:2244-52. [DOI: 10.1039/c9ee00336c] [Cited by in Crossref: 21] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
91 Kasamatsu S. Persulfide-Dependent Regulation of Electrophilic Redox Signaling in Neural Cells. Antioxid Redox Signal 2020;33:1320-31. [PMID: 32536194 DOI: 10.1089/ars.2020.8130] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
92 Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, Fernandes AR. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine's Tool Box. Molecules 2015;20:16852-91. [PMID: 26389876 DOI: 10.3390/molecules200916852] [Cited by in Crossref: 230] [Cited by in F6Publishing: 143] [Article Influence: 32.9] [Reference Citation Analysis]
93 Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H2S Signaling through Persulfidation. Chem Rev 2018;118:1253-337. [PMID: 29112440 DOI: 10.1021/acs.chemrev.7b00205] [Cited by in Crossref: 324] [Cited by in F6Publishing: 283] [Article Influence: 64.8] [Reference Citation Analysis]
94 Shinkai Y, Kumagai Y. Sulfane Sulfur in Toxicology: A Novel Defense System Against Electrophilic Stress. Toxicol Sci 2019;170:3-9. [PMID: 30985901 DOI: 10.1093/toxsci/kfz091] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
95 DeLeon ER, Gao Y, Huang E, Arif M, Arora N, Divietro A, Patel S, Olson KR. A case of mistaken identity: are reactive oxygen species actually reactive sulfide species? Am J Physiol Regul Integr Comp Physiol 2016;310:R549-60. [PMID: 26764057 DOI: 10.1152/ajpregu.00455.2015] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 8.5] [Reference Citation Analysis]
96 Olive LN, Dornshuld EV, Webster CE. The curious case of DMSO: A CCSD(T)/CBS(aQ56+d) benchmark and DFT study. J Chem Phys 2021;155:114304. [PMID: 34551533 DOI: 10.1063/5.0057327] [Reference Citation Analysis]
97 Rose P, Moore PK, Whiteman M, Kirk C, Zhu Y. Diet and Hydrogen Sulfide Production in Mammals. Antioxidants & Redox Signaling 2021;34:1378-93. [DOI: 10.1089/ars.2020.8217] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Nye-Wood MG, Spraggins JM, Caprioli RM, Schey KL, Donaldson PJ, Grey AC. Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging. Exp Eye Res 2017;154:70-8. [PMID: 27838309 DOI: 10.1016/j.exer.2016.11.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
99 Lu T, Wu X, Cao Q, Xia Y, Xun L, Liu H, Dahl C, Harwood CS. Sulfane Sulfur Posttranslationally Modifies the Global Regulator AdpA to Influence Actinorhodin Production and Morphological Differentiation of Streptomyces coelicolor. mBio. [DOI: 10.1128/mbio.03862-21] [Reference Citation Analysis]