BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Peng J, Wu Z, Qi X, Chen Y, Li X. Dendrimers as potential therapeutic tools in HIV inhibition. Molecules 2013;18:7912-29. [PMID: 23884127 DOI: 10.3390/molecules18077912] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Melikishvili S, Poturnayova A, Ionov M, Bryszewska M, Vary T, Cirak J, Muñoz-fernández MÁ, Gomez-ramirez R, de la Mata FJ, Hianik T. The effect of polyethylene glycol-modified lipids on the interaction of HIV-1 derived peptide–dendrimer complexes with lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016;1858:3005-16. [DOI: 10.1016/j.bbamem.2016.09.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
2 Abdoli A, Radmehr N, Bolhassani A, Eidi A, Mehrbod P, Motevalli F, Kianmehr Z, Chiani M, Mahdavi M, Yazdani S, Ardestani MS, Kandi MR, Aghasadeghi MR. Conjugated anionic PEG-citrate G2 dendrimer with multi-epitopic HIV-1 vaccine candidate enhance the cellular immune responses in mice. Artif Cells Nanomed Biotechnol 2017;45:1762-8. [PMID: 28278580 DOI: 10.1080/21691401.2017.1290642] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
3 Soundararajan D, Ramana LN, Shankaran P, Krishnan UM. Nanoparticle-based strategies to target HIV-infected cells. Colloids Surf B Biointerfaces 2022;213:112405. [PMID: 35255375 DOI: 10.1016/j.colsurfb.2022.112405] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Nair M, Jayant RD, Kaushik A, Sagar V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 2016;103:202-17. [PMID: 26944096 DOI: 10.1016/j.addr.2016.02.008] [Cited by in Crossref: 117] [Cited by in F6Publishing: 99] [Article Influence: 19.5] [Reference Citation Analysis]
5 Jain K, Mehra NK, Jain VK, Jain NK. IPN Dendrimers in Drug Delivery. In: Jana S, Jana S, editors. Interpenetrating Polymer Network: Biomedical Applications. Singapore: Springer; 2020. pp. 143-81. [DOI: 10.1007/978-981-15-0283-5_6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Kharwade R, More S, Mahajan N, Agrawal P. Functionalised Dendrimers: Potential Tool for Antiretroviral Therapy. CNANO 2020;16:708-22. [DOI: 10.2174/1573413716666200213114836] [Reference Citation Analysis]
7 Bolhassani A, Milani A. Small Interfering RNAs and their Delivery Systems: A Novel Powerful Tool for the Potential Treatment of HIV Infections. Curr Mol Pharmacol 2020;13:173-81. [PMID: 31760929 DOI: 10.2174/1874467212666191023120954] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Grande F, Ioele G, Occhiuzzi MA, De Luca M, Mazzotta E, Ragno G, Garofalo A, Muzzalupo R. Reverse Transcriptase Inhibitors Nanosystems Designed for Drug Stability and Controlled Delivery. Pharmaceutics 2019;11:E197. [PMID: 31035595 DOI: 10.3390/pharmaceutics11050197] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
9 Das MK, Sarma A, Chakraborty T. Nano-ART and NeuroAIDS. Drug Deliv Transl Res 2016;6:452-72. [PMID: 27137528 DOI: 10.1007/s13346-016-0293-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
10 Ensign LM, Cone R, Hanes J. Nanoparticle-based drug delivery to the vagina: a review. J Control Release 2014;190:500-14. [PMID: 24830303 DOI: 10.1016/j.jconrel.2014.04.033] [Cited by in Crossref: 114] [Cited by in F6Publishing: 95] [Article Influence: 14.3] [Reference Citation Analysis]
11 Milovanovic M, Arsenijevic A, Milovanovic J, Kanjevac T, Arsenijevic N. Nanoparticles in Antiviral Therapy. Antimicrobial Nanoarchitectonics. Elsevier; 2017. pp. 383-410. [DOI: 10.1016/b978-0-323-52733-0.00014-8] [Cited by in Crossref: 28] [Article Influence: 5.6] [Reference Citation Analysis]
12 Gutierrez-ulloa CE, Sepúlveda-crespo D, García-broncano P, Malý M, Muñoz-fernández MA, de la Mata FJ, Gómez R. Synthesis of bow-tie carbosilane dendrimers and their HIV antiviral capacity: A comparison of the dendritic topology on the biological process. European Polymer Journal 2019;119:200-12. [DOI: 10.1016/j.eurpolymj.2019.07.034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
13 Mhlwatika Z, Aderibigbe BA. Application of Dendrimers for the Treatment of Infectious Diseases. Molecules 2018;23:E2205. [PMID: 30200314 DOI: 10.3390/molecules23092205] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 8.5] [Reference Citation Analysis]
14 Sindhwani S, Chan WCW. Nanotechnology for modern medicine: next step towards clinical translation. J Intern Med 2021;290:486-98. [PMID: 33480120 DOI: 10.1111/joim.13254] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
15 Lenjisa JL, Woldu MA, Satessa GD. New hope for eradication of HIV from the body: the role of polymeric nanomedicines in HIV/AIDS pharmacotherapy. J Nanobiotechnology 2014;12:9. [PMID: 24655921 DOI: 10.1186/1477-3155-12-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
16 Maciel D, Guerrero-Beltrán C, Ceña-Diez R, Tomás H, Muñoz-Fernández MÁ, Rodrigues J. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. Nanoscale 2019;11:9679-90. [PMID: 31066407 DOI: 10.1039/c9nr00303g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 6.7] [Reference Citation Analysis]
17 Weiyue S, Ying L, Kanamoto T, Asai D, Takemura H, Nakashima H, Miyazaki K, Yoshida T. Elucidation of anti-HIV mechanism of sulfated cellobiose-polylysine dendrimers. Carbohydr Res 2020;495:108084. [PMID: 32658833 DOI: 10.1016/j.carres.2020.108084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
18 Bianculli RH, Mase JD, Schulz MD. Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules 2020;53:9158-86. [DOI: 10.1021/acs.macromol.0c01273] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
19 Moura LIF, Malfanti A, Peres C, Matos AI, Guegain E, Sainz V, Zloh M, Vicent MJ, Florindo HF. Functionalized branched polymers: promising immunomodulatory tools for the treatment of cancer and immune disorders. Mater Horiz 2019;6:1956-73. [DOI: 10.1039/c9mh00628a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 1] [Article Influence: 7.7] [Reference Citation Analysis]
20 Kandi MR, Mohammadnejad J, Shafiee Ardestani M, Zabihollahi R, Soleymani S, Aghasadeghi MR, Baesi K. Inherent anti-HIV activity of biocompatible anionic citrate-PEG-citrate dendrimer. Mol Biol Rep 2019;46:143-9. [PMID: 30414104 DOI: 10.1007/s11033-018-4455-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
21 Assadi A, Najafabadi VS, Shandiz SA, Boroujeni AS, Ashrafi S, Vaziri AZ, Ghoreishi SM, Aghasadeghi MR, Ebrahimi SE, Pirali-Hamedani M, Ardestani MS. Novel chlorambucil-conjugated anionic linear-globular PEG-based second-generation dendrimer: in vitro/in vivo improved anticancer activity. Onco Targets Ther 2016;9:5531-43. [PMID: 27660471 DOI: 10.2147/OTT.S103487] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
22 Malik T, Chauhan G, Rath G, Murthy RS, Goyal AK. "Fusion and binding inhibition" key target for HIV-1 treatment and pre-exposure prophylaxis: targets, drug delivery and nanotechnology approaches. Drug Deliv 2017;24:608-21. [PMID: 28240046 DOI: 10.1080/10717544.2016.1228717] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]