BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Di Pietro M, Filardo S, Romano S, Sessa R. Chlamydia trachomatis and Chlamydia pneumoniae Interaction with the Host: Latest Advances and Future Prospective. Microorganisms 2019;7:E140. [PMID: 31100923 DOI: 10.3390/microorganisms7050140] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Filardo S, Di Pietro M, Pasqualetti P, Manera M, Diaco F, Sessa R. In-cell western assay as a high-throughput approach for Chlamydia trachomatis quantification and susceptibility testing to antimicrobials. PLoS One 2021;16:e0251075. [PMID: 33974662 DOI: 10.1371/journal.pone.0251075] [Reference Citation Analysis]
2 Jelocnik M. Chlamydiae from Down Under: The Curious Cases of Chlamydial Infections in Australia. Microorganisms 2019;7:E602. [PMID: 31766703 DOI: 10.3390/microorganisms7120602] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
3 Zapatero-Belinchón FJ, Carriquí-Madroñal B, Gerold G. Proximity labeling approaches to study protein complexes during virus infection. Adv Virus Res 2021;109:63-104. [PMID: 33934830 DOI: 10.1016/bs.aivir.2021.02.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Filardo S, Di Pietro M, Sessa R. Towards a Deeper Understanding of Chlamydia trachomatis Pathogenetic Mechanisms: Editorial to the Special Issue "Chlamydia trachomatis Pathogenicity and Disease". Int J Mol Sci 2022;23:3943. [PMID: 35409301 DOI: 10.3390/ijms23073943] [Reference Citation Analysis]
5 Filardo S, Di Pietro M, Diaco F, Sessa R. In Vitro Modelling of Chlamydia trachomatis Infection in the Etiopathogenesis of Male Infertility and Reactive Arthritis. Front Cell Infect Microbiol 2022;12:840802. [DOI: 10.3389/fcimb.2022.840802] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Filardo S, Di Pietro M, Diaco F, Romano S, Sessa R. Oxidative Stress and Inflammation in SARS-CoV-2- and Chlamydia pneumoniae-Associated Cardiovascular Diseases. Biomedicines 2021;9:723. [PMID: 34202515 DOI: 10.3390/biomedicines9070723] [Reference Citation Analysis]
7 Chen X, Zhou Q, Tan Y, Wang R, Wu X, Liu J, Liu R, Wang S, Dong S. Nanoparticle-Based Lateral Flow Biosensor Integrated With Loop-Mediated Isothermal Amplification for Rapid and Visual Identification of Chlamydia trachomatis for Point-of-Care Use. Front Microbiol 2022;13:914620. [DOI: 10.3389/fmicb.2022.914620] [Reference Citation Analysis]
8 Di Pietro M, Filardo S, Frasca F, Scagnolari C, Manera M, Sessa V, Antonelli G, Sessa R. Interferon-γ Possesses Anti-Microbial and Immunomodulatory Activity on a Chlamydia Trachomatis Infection Model of Primary Human Synovial Fibroblasts. Microorganisms 2020;8:E235. [PMID: 32050567 DOI: 10.3390/microorganisms8020235] [Reference Citation Analysis]
9 Vanić Ž, Jøraholmen MW, Škalko-Basnet N. Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Adv Drug Deliv Rev 2021;178:113855. [PMID: 34214638 DOI: 10.1016/j.addr.2021.113855] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
10 Mohammadzadeh E, Jalali-jalalabadi H, Abdolahinia ED, Narimisa N. The effect of Chlamydia pneumoniae infection on serum lipid profile: A systematic review and meta-analysis. Gene Reports 2022;27:101585. [DOI: 10.1016/j.genrep.2022.101585] [Reference Citation Analysis]
11 Johnston SL, Goldblatt DL, Evans SE, Tuvim MJ, Dickey BF. Airway Epithelial Innate Immunity. Front Physiol 2021;12:749077. [PMID: 34899381 DOI: 10.3389/fphys.2021.749077] [Reference Citation Analysis]
12 Murdaca G, Greco M, Borro M, Gangemi S. Hygiene hypothesis and autoimmune diseases: A narrative review of clinical evidences and mechanisms. Autoimmun Rev 2021;20:102845. [PMID: 33971339 DOI: 10.1016/j.autrev.2021.102845] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Dzakah EE, Huang L, Xue Y, Wei S, Wang X, Chen H, Shui J, Kyei F, Rashid F, Zheng H, Yang B, Tang S. Host cell response and distinct gene expression profiles at different stages of Chlamydia trachomatis infection reveals stage-specific biomarkers of infection. BMC Microbiol 2021;21:3. [PMID: 33397284 DOI: 10.1186/s12866-020-02061-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Kortesoja M, Trofin RE, Hanski L. A platform for studying the transfer of Chlamydia pneumoniae infection between respiratory epithelium and phagocytes. J Microbiol Methods 2020;171:105857. [PMID: 32006529 DOI: 10.1016/j.mimet.2020.105857] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
15 Michalska K, Wellington S, Maltseva N, Jedrzejczak R, Selem-Mojica N, Rosas-Becerra LR, Barona-Gómez F, Hung DT, Joachimiak A. Catalytically impaired TrpA subunit of tryptophan synthase from Chlamydia trachomatis is an allosteric regulator of TrpB. Protein Sci 2021;30:1904-18. [PMID: 34107106 DOI: 10.1002/pro.4143] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Filardo S, Di Pietro M, Frasca F, Diaco F, Scordio M, Antonelli G, Scagnolari C, Sessa R. Potential IFNγ Modulation of Inflammasome Pathway in Chlamydia trachomatis Infected Synovial Cells. Life (Basel) 2021;11:1359. [PMID: 34947890 DOI: 10.3390/life11121359] [Reference Citation Analysis]