BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Deng J, Wei W, Chen Z, Lin B, Zhao W, Luo Y, Zhang X. Engineered Liver-on-a-Chip Platform to Mimic Liver Functions and Its Biomedical Applications: A Review. Micromachines (Basel) 2019;10:E676. [PMID: 31591365 DOI: 10.3390/mi10100676] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 14.7] [Reference Citation Analysis]
Number Citing Articles
1 Doi K, Kimura H, Matsunaga YT, Fujii T, Nangaku M. Glomerulus-on-a-Chip: Current Insights and Future Potential Towards Recapitulating Selectively Permeable Filtration Systems. IJNRD 2022;Volume 15:85-101. [DOI: 10.2147/ijnrd.s344725] [Reference Citation Analysis]
2 Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal 2021;209:114534. [PMID: 34929566 DOI: 10.1016/j.jpba.2021.114534] [Reference Citation Analysis]
3 Tirumala MG, Anchi P, Raja S, Rachamalla M, Godugu C. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards In Vitro Models and Adverse Outcome Pathways. Front Pharmacol 2021;12:612659. [PMID: 34566630 DOI: 10.3389/fphar.2021.612659] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Andrysiak K, Stępniewski J, Dulak J. Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research. Pflugers Arch 2021;473:1061-85. [PMID: 33629131 DOI: 10.1007/s00424-021-02536-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
5 Shoemaker JT, Zhang W, Atlas SI, Bryan RA, Inman SW, Vukasinovic J. A 3D Cell Culture Organ-on-a-Chip Platform With a Breathable Hemoglobin Analogue Augments and Extends Primary Human Hepatocyte Functions in vitro. Front Mol Biosci 2020;7:568777. [PMID: 33195413 DOI: 10.3389/fmolb.2020.568777] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Morsink MAJ, Willemen NGA, Leijten J, Bansal R, Shin SR. Immune Organs and Immune Cells on a Chip: An Overview of Biomedical Applications. Micromachines (Basel) 2020;11:E849. [PMID: 32932680 DOI: 10.3390/mi11090849] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
7 Hong T, Chen Y, Li X, Lu Y. The Role and Mechanism of Oxidative Stress and Nuclear Receptors in the Development of NAFLD. Oxid Med Cell Longev 2021;2021:6889533. [PMID: 34745420 DOI: 10.1155/2021/6889533] [Reference Citation Analysis]
8 Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater 2020;116:67-83. [PMID: 32890749 DOI: 10.1016/j.actbio.2020.08.041] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
9 Özkan A, Stolley D, Cressman ENK, McMillin M, DeMorrow S, Yankeelov TE, Rylander MN. The Influence of Chronic Liver Diseases on Hepatic Vasculature: A Liver-on-a-chip Review. Micromachines (Basel) 2020;11:E487. [PMID: 32397454 DOI: 10.3390/mi11050487] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
10 Carvalho V, Gonçalves I, Lage T, Rodrigues RO, Minas G, Teixeira SFCF, Moita AS, Hori T, Kaji H, Lima RA. 3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review. Sensors (Basel) 2021;21:3304. [PMID: 34068811 DOI: 10.3390/s21093304] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Ustun M, Rahmani Dabbagh S, Ilci IS, Bagci-Onder T, Tasoglu S. Glioma-on-a-Chip Models. Micromachines (Basel) 2021;12:490. [PMID: 33926127 DOI: 10.3390/mi12050490] [Reference Citation Analysis]
12 Polidoro MA, Ferrari E, Marzorati S, Lleo A, Rasponi M. Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Liver Int 2021;41:1744-61. [PMID: 33966344 DOI: 10.1111/liv.14942] [Reference Citation Analysis]
13 Torisawa YS, Tung YC. Editorial for the Special Issue on Organs-on-Chips. Micromachines (Basel) 2020;11:E369. [PMID: 32244638 DOI: 10.3390/mi11040369] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
14 Busche M, Tomilova O, Schütte J, Werner S, Beer M, Groll N, Hagmeyer B, Pawlak M, Jones PD, Schmees C, Becker H, Schnabel J, Gall K, Hemmler R, Matz-soja M, Damm G, Beuck S, Klaassen T, Moer J, Ullrich A, Runge D, Schenke-layland K, Gebhardt R, Stelzle M. HepaChip-MP – a twenty-four chamber microplate for a continuously perfused liver coculture model. Lab Chip 2020;20:2911-26. [DOI: 10.1039/d0lc00357c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
15 Lee SY, Kim D, Lee SH, Sung JH. Microtechnology-based in vitro models: Mimicking liver function and pathophysiology. APL Bioeng 2021;5:041505. [PMID: 34703969 DOI: 10.1063/5.0061896] [Reference Citation Analysis]
16 Richardson L, Kim S, Menon R, Han A. Organ-On-Chip Technology: The Future of Feto-Maternal Interface Research? Front Physiol 2020;11:715. [PMID: 32695021 DOI: 10.3389/fphys.2020.00715] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
17 Ya S, Ding W, Li S, Du K, Zhang Y, Li C, Liu J, Li F, Li P, Luo T, He L, Xu A, Gao D, Qiu B. On-Chip Construction of Liver Lobules with Self-Assembled Perfusable Hepatic Sinusoid Networks. ACS Appl Mater Interfaces 2021;13:32640-52. [PMID: 34225454 DOI: 10.1021/acsami.1c00794] [Reference Citation Analysis]
18 Shinohara M, Arakawa H, Oda Y, Shiraki N, Sugiura S, Nishiuchi T, Satoh T, Iino K, Leo S, Kato Y, Araya K, Kawanishi T, Nakatsuji T, Mitsuta M, Inamura K, Goto T, Shinha K, Nihei W, Komori K, Nishikawa M, Kume S, Kato Y, Kanamori T, Sakai Y, Kimura H. Coculture with hiPS-derived intestinal cells enhanced human hepatocyte functions in a pneumatic-pressure-driven two-organ microphysiological system. Sci Rep 2021;11:5437. [PMID: 33686099 DOI: 10.1038/s41598-021-84861-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Farooqi HMU, Khalid MAU, Kim KH, Lee SR, Choi KH. Real-time physiological sensor-based liver-on-chip device for monitoring drug toxicity. J Micromech Microeng 2020;30:115013. [DOI: 10.1088/1361-6439/ababf4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
20 Mak KK, Epemolu O, Pichika MR. The role of DMPK science in improving pharmaceutical research and development efficiency. Drug Discov Today 2021:S1359-6446(21)00484-0. [PMID: 34774767 DOI: 10.1016/j.drudis.2021.11.005] [Reference Citation Analysis]
21 Wang J, Ren H, Liu Y, Sun L, Zhang Z, Zhao Y, Shi X. Bioinspired Artificial Liver System with hiPSC-Derived Hepatocytes for Acute Liver Failure Treatment. Adv Healthc Mater 2021;:e2101580. [PMID: 34599859 DOI: 10.1002/adhm.202101580] [Reference Citation Analysis]
22 Kim J, Lee C, Kim I, Ro J, Kim J, Min Y, Park J, Sunkara V, Park YS, Michael I, Kim YA, Lee HJ, Cho YK. Three-Dimensional Human Liver-Chip Emulating Premetastatic Niche Formation by Breast Cancer-Derived Extracellular Vesicles. ACS Nano 2020;14:14971-88. [PMID: 32880442 DOI: 10.1021/acsnano.0c04778] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
23 Olgasi C, Cucci A, Follenzi A. iPSC-Derived Liver Organoids: A Journey from Drug Screening, to Disease Modeling, Arriving to Regenerative Medicine. Int J Mol Sci 2020;21:E6215. [PMID: 32867371 DOI: 10.3390/ijms21176215] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Tamai M, Fujiyama Y, Tagawa YI. Hepatocytes and Endothelial Networks in a Fluid-Based In Vitro Model of Liver Drug Metabolism. Tissue Eng Part A 2021. [PMID: 33267675 DOI: 10.1089/ten.TEA.2020.0226] [Reference Citation Analysis]
25 Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Reference Citation Analysis]
26 Sasikumar S, Chameettachal S, Kingshott P, Cromer B, Pati F. 3D hepatic mimics - the need for a multicentric approach. Biomed Mater 2020;15:052002. [PMID: 32460259 DOI: 10.1088/1748-605X/ab971c] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Farooqi HMU, Sammantasinghar A, Kausar F, Farooqi MA, Chethikkattuveli Salih AR, Hyun K, Lim J, Khalil AAK, Mumtaz AS, Choi KH. Study of the Anticancer Potential of Plant Extracts Using Liver Tumor Microphysiological System. Life 2022;12:135. [DOI: 10.3390/life12020135] [Reference Citation Analysis]
28 Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci 2021;22:2011. [PMID: 33670545 DOI: 10.3390/ijms22042011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
29 Huang T, Terrell JA, Chung JH, Chen C. Electrospun Microfibers Modulate Intracellular Amino Acids in Liver Cells via Integrin β1. Bioengineering (Basel) 2021;8:88. [PMID: 34206385 DOI: 10.3390/bioengineering8070088] [Reference Citation Analysis]
30 Singh D, Mathur A, Arora S, Roy S, Mahindroo N. Journey of organ on a chip technology and its role in future healthcare scenario. Applied Surface Science Advances 2022;9:100246. [DOI: 10.1016/j.apsadv.2022.100246] [Reference Citation Analysis]
31 Wang Y, Brodin E, Nishii K, Frieboes HB, Mumenthaler SM, Sparks JL, Macklin P. Impact of tumor-parenchyma biomechanics on liver metastatic progression: a multi-model approach. Sci Rep 2021;11:1710. [PMID: 33462259 DOI: 10.1038/s41598-020-78780-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
32 Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021;13:3651. [PMID: 34359553 DOI: 10.3390/cancers13153651] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Garcia-Gutierrez E, Cotter PD. Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Crit Rev Microbiol 2021;:1-26. [PMID: 34591726 DOI: 10.1080/1040841X.2021.1979933] [Reference Citation Analysis]
34 Donoghue L, Nguyen KT, Graham C, Sethu P. Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing. Micromachines (Basel) 2021;12:139. [PMID: 33525451 DOI: 10.3390/mi12020139] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M. Liver Tissue Engineering as an Emerging Alternative for Liver Disease Treatment. Tissue Eng Part B Rev 2020;26:145-63. [PMID: 31797731 DOI: 10.1089/ten.TEB.2019.0233] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
36 Huang D, Zhang X, Fu X, Zu Y, Sun W, Zhao Y. Liver spheroids on chips as emerging platforms for drug screening. Engineered Regeneration 2021;2:246-56. [DOI: 10.1016/j.engreg.2021.10.003] [Reference Citation Analysis]
37 Fedi A, Vitale C, Ponschin G, Ayehunie S, Fato M, Scaglione S. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review. J Control Release 2021;335:247-68. [PMID: 34033859 DOI: 10.1016/j.jconrel.2021.05.028] [Reference Citation Analysis]
38 Lewis PL, Wells JM. Engineering-inspired approaches to study β-cell function and diabetes. Stem Cells 2021;39:522-35. [PMID: 33497522 DOI: 10.1002/stem.3340] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Malik M, Yang Y, Fathi P, Mahler GJ, Esch MB. Critical Considerations for the Design of Multi-Organ Microphysiological Systems (MPS). Front Cell Dev Biol 2021;9:721338. [PMID: 34568333 DOI: 10.3389/fcell.2021.721338] [Reference Citation Analysis]
40 Kanabekova P, Kadyrova A, Kulsharova G. Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. Micromachines 2022;13:428. [DOI: 10.3390/mi13030428] [Reference Citation Analysis]
41 Carvalho V, Rodrigues RO, Lima RA, Teixeira S. Computational Simulations in Advanced Microfluidic Devices: A Review. Micromachines (Basel) 2021;12:1149. [PMID: 34683199 DOI: 10.3390/mi12101149] [Reference Citation Analysis]
42 Liu L, Yu L, Li Z, Li W, Huang W. Patient-derived organoid (PDO) platforms to facilitate clinical decision making. J Transl Med 2021;19:40. [PMID: 33478472 DOI: 10.1186/s12967-020-02677-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
43 [DOI: 10.1101/2020.05.04.074989] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Fallowfield JA, Jimenez-Ramos M, Robertson A. Emerging synthetic drugs for the treatment of liver cirrhosis. Expert Opin Emerg Drugs 2021;26:149-63. [PMID: 33856246 DOI: 10.1080/14728214.2021.1918099] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Telles-silva KA, Pacheco L, Komatsu S, Chianca F, Caires-júnior LC, Araujo BHS, Goulart E, Zatz M. Applied Hepatic Bioengineering: Modeling the Human Liver Using Organoid and Liver-on-a-Chip Technologies. Front Bioeng Biotechnol 2022;10:845360. [DOI: 10.3389/fbioe.2022.845360] [Reference Citation Analysis]
46 Bayir Garbioglu D, Demir N, Ozel C, Avci H, Dincer M. Determination of therapeutic agents efficiencies of microsatellite instability high colon cancer cells in post-metastatic liver biochip modeling. FASEB J 2021;35:e21834. [PMID: 34403553 DOI: 10.1096/fj.202100333R] [Reference Citation Analysis]
47 Almansoori AA, Kim B, Lee JH, Tran SD. Tissue Engineering of Oral Mucosa and Salivary Gland: Disease Modeling and Clinical Applications. Micromachines (Basel) 2020;11:E1066. [PMID: 33266093 DOI: 10.3390/mi11121066] [Reference Citation Analysis]
48 Zahmatkesh E, Ghanian MH, Zarkesh I, Farzaneh Z, Halvaei M, Heydari Z, Moeinvaziri F, Othman A, Ruoß M, Piryaei A, Gramignoli R, Yakhkeshi S, Nüssler A, Najimi M, Baharvand H, Vosough M. Tissue-Specific Microparticles Improve Organoid Microenvironment for Efficient Maturation of Pluripotent Stem-Cell-Derived Hepatocytes. Cells 2021;10:1274. [PMID: 34063948 DOI: 10.3390/cells10061274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Kim SK, Kim YH, Park S, Cho SW. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater 2021:S1742-7061(21)00143-4. [PMID: 33711526 DOI: 10.1016/j.actbio.2021.03.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Tajeddin A, Mustafaoglu N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. Micromachines (Basel) 2021;12:1443. [PMID: 34945293 DOI: 10.3390/mi12121443] [Reference Citation Analysis]
51 Cecen B, Karavasili C, Nazir M, Bhusal A, Dogan E, Shahriyari F, Tamburaci S, Buyukoz M, Kozaci LD, Miri AK. Multi-Organs-on-Chips for Testing Small-Molecule Drugs: Challenges and Perspectives. Pharmaceutics 2021;13:1657. [PMID: 34683950 DOI: 10.3390/pharmaceutics13101657] [Reference Citation Analysis]
52 Deng J, Cong Y, Han X, Wei W, Lu Y, Liu T, Zhao W, Lin B, Luo Y, Zhang X. A liver-on-a-chip for hepatoprotective activity assessment. Biomicrofluidics 2020;14:064107. [PMID: 33312328 DOI: 10.1063/5.0024767] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Stolley DL, Crouch AC, Özkan A, Seeley EH, Whitley EM, Rylander MN, Cressman ENK. Combining Chemistry and Engineering for Hepatocellular Carcinoma: Nano-Scale and Smaller Therapies. Pharmaceutics 2020;12:E1243. [PMID: 33419304 DOI: 10.3390/pharmaceutics12121243] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
54 Rahmani Dabbagh S, Rezapour Sarabi M, Birtek MT, Mustafaoglu N, Zhang YS, Tasoglu S. 3D bioprinted organ‐on‐chips. Aggregate. [DOI: 10.1002/agt2.197] [Reference Citation Analysis]
55 Argentati C, Tortorella I, Bazzucchi M, Morena F, Martino S. Harnessing the Potential of Stem Cells for Disease Modeling: Progress and Promises. J Pers Med. 2020;10. [PMID: 32041088 DOI: 10.3390/jpm10010008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
56 Ren Y, Yang X, Ma Z, Sun X, Zhang Y, Li W, Yang H, Qiang L, Yang Z, Liu Y, Deng C, Zhou L, Wang T, Lin J, Li T, Wu T, Wang J. Developments and Opportunities for 3D Bioprinted Organoids. Int J Bioprint 2021;7:364. [PMID: 34286150 DOI: 10.18063/ijb.v7i3.364] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Klak M, Bryniarski T, Kowalska P, Gomolka M, Tymicki G, Kosowska K, Cywoniuk P, Dobrzanski T, Turowski P, Wszola M. Novel Strategies in Artificial Organ Development: What Is the Future of Medicine? Micromachines (Basel) 2020;11:E646. [PMID: 32629779 DOI: 10.3390/mi11070646] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]