BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Supuran CT, Capasso C. An Overview of the Bacterial Carbonic Anhydrases. Metabolites 2017;7:E56. [PMID: 29137134 DOI: 10.3390/metabo7040056] [Cited by in Crossref: 87] [Cited by in F6Publishing: 79] [Article Influence: 17.4] [Reference Citation Analysis]
Number Citing Articles
1 Jo BH, Im S, Cha HJ. Halotolerant carbonic anhydrase with unusual N-terminal extension from marine Hydrogenovibrio marinus as novel biocatalyst for carbon sequestration under high-salt environments. Journal of CO2 Utilization 2018;26:415-24. [DOI: 10.1016/j.jcou.2018.05.030] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
2 Razzak MA, Lee J, Lee DW, Kim JH, Yoon HS, Hwang I. Expression of seven carbonic anhydrases in red alga Gracilariopsis chorda and their subcellular localization in a heterologous system, Arabidopsis thaliana. Plant Cell Rep 2019;38:147-59. [DOI: 10.1007/s00299-018-2356-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Llanos MA, Sbaraglini ML, Villalba ML, Ruiz MD, Carrillo C, Alba Soto C, Talevi A, Angeli A, Parkkila S, Supuran CT, Gavernet L. A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2020;35:21-30. [PMID: 31619095 DOI: 10.1080/14756366.2019.1677638] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
4 Kupriyanova EV, Sinetova MA, Mironov KS, Novikova GV, Dykman LA, Rodionova MV, Gabrielyan DA, Los DA. Highly active extracellular α-class carbonic anhydrase of Cyanothece sp. ATCC 51142. Biochimie 2019;160:200-9. [DOI: 10.1016/j.biochi.2019.03.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
5 Nocentini A, Supuran CT, Capasso C. An overview on the recently discovered iota-carbonic anhydrases. J Enzyme Inhib Med Chem 2021;36:1988-95. [PMID: 34482770 DOI: 10.1080/14756366.2021.1972995] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
6 Küçükbay H, Gönül Z, Küçükbay FZ, Angeli A, Bartolucci G, Supuran CT. Preparation, carbonic anhydrase enzyme inhibition and antioxidant activity of novel 7-amino-3,4-dihydroquinolin-2(1H)-one derivatives incorporating mono or dipeptide moiety. J Enzyme Inhib Med Chem 2020;35:1021-6. [PMID: 32297533 DOI: 10.1080/14756366.2020.1751620] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
7 Parri L, Fort A, Lo Grasso A, Mugnaini M, Vignoli V, Capasso C, Del Prete S, Romanelli MN, Supuran CT. Evaluating the efficiency of enzyme accelerated CO2 capture: chemical kinetics modelling for interpreting measurement results. J Enzyme Inhib Med Chem 2021;36:394-401. [PMID: 33430654 DOI: 10.1080/14756366.2020.1864631] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Del Prete S, Bua S, Alasmary FAS, AlOthman Z, Tambutté S, Zoccola D, Supuran CT, Capasso C. Comparison of the Sulfonamide Inhibition Profiles of the α-Carbonic Anhydrase Isoforms (SpiCA1, SpiCA2 and SpiCA3) Encoded by the Genome of the Scleractinian Coral Stylophora pistillata. Mar Drugs 2019;17:E146. [PMID: 30832211 DOI: 10.3390/md17030146] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Supuran CT, Capasso C. A Highlight on the Inhibition of Fungal Carbonic Anhydrases as Drug Targets for the Antifungal Armamentarium. Int J Mol Sci 2021;22:4324. [PMID: 33919261 DOI: 10.3390/ijms22094324] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Del Prete S, Bua S, Supuran CT, Capasso C. Escherichia coli γ-carbonic anhydrase: characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. J Enzyme Inhib Med Chem 2020;35:1545-54. [PMID: 32746656 DOI: 10.1080/14756366.2020.1800670] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
11 Taboada H, Dunn MF, Meneses N, Vargas-lagunas C, Buchs N, Andrade-domínguez A, Encarnación S. Qualitative changes in proteins contained in outer membrane vesicles produced by Rhizobium etli grown in the presence of the nod gene inducer naringenin. Arch Microbiol 2019;201:1173-94. [DOI: 10.1007/s00203-019-01682-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Del Prete S, Nocentini A, Supuran CT, Capasso C. Bacterial ι-carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2020;35:1060-8. [PMID: 32314608 DOI: 10.1080/14756366.2020.1755852] [Cited by in Crossref: 23] [Cited by in F6Publishing: 29] [Article Influence: 23.0] [Reference Citation Analysis]
13 Bua S, Haapanen S, Kuuslahti M, Parkkila S, Supuran CT. Activation Studies of the β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica with Amino Acids and Amines. Metabolites 2019;9:E26. [PMID: 30717275 DOI: 10.3390/metabo9020026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
14 Al-Sanea MM, Elkamhawy A, Paik S, Bua S, Ha Lee S, Abdelgawad MA, Roh EJ, Eldehna WM, Supuran CT. Synthesis and biological evaluation of novel 3-(quinolin-4-ylamino)benzenesulfonamidesAQ3 as carbonic anhydrase isoforms I and II inhibitors. J Enzyme Inhib Med Chem 2019;34:1457-64. [PMID: 31411080 DOI: 10.1080/14756366.2019.1652282] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
15 Angeli A, Kartsev V, Petrou A, Lichitsky B, Komogortsev A, Pinteala M, Geronikaki A, Supuran CT. Pyrazolo[4,3-c]pyridine Sulfonamides as Carbonic Anhydrase Inhibitors: Synthesis, Biological and In Silico Studies. Pharmaceuticals 2022;15:316. [DOI: 10.3390/ph15030316] [Reference Citation Analysis]
16 Akgul O, Angeli A, Selleri S, Capasso C, Supuran CT, Carta F. Taurultams incorporating arylsulfonamide: First in vitro inhibition studies of α-, β- and γ-class Carbonic Anhydrases from Vibrio cholerae and Burkholderia pseudomallei. Eur J Med Chem 2021;219:113444. [PMID: 33866238 DOI: 10.1016/j.ejmech.2021.113444] [Reference Citation Analysis]
17 Clima L, Craciun BF, Angeli A, Petreni A, Bonardi A, Nocentini A, Carta F, Gratteri P, Pinteala M, Supuran CT. Synthesis, Computational Studies and Assessment of in Vitro Activity of Squalene Derivatives as Carbonic Anhydrase Inhibitors. ChemMedChem 2020;15:2052-7. [PMID: 32744806 DOI: 10.1002/cmdc.202000500] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Bozdag M, Carta F, Ceruso M, Ferraroni M, McDonald PC, Dedhar S, Supuran CT. Discovery of 4-Hydroxy-3-(3-(phenylureido)benzenesulfonamides as SLC-0111 Analogues for the Treatment of Hypoxic Tumors Overexpressing Carbonic Anhydrase IX. J Med Chem 2018;61:6328-38. [PMID: 29962205 DOI: 10.1021/acs.jmedchem.8b00770] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 8.8] [Reference Citation Analysis]
19 Supuran CT. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin Drug Discov 2020;15:671-86. [PMID: 32208982 DOI: 10.1080/17460441.2020.1743676] [Cited by in Crossref: 25] [Cited by in F6Publishing: 41] [Article Influence: 12.5] [Reference Citation Analysis]
20 Mahmood SU, Saeed A, Bua S, Nocentini A, Gratteri P, Supuran CT. Synthesis, biological evaluation and computational studies of novel iminothiazolidinone benzenesulfonamides as potent carbonic anhydrase II and IX inhibitors. Bioorg Chem 2018;77:381-6. [PMID: 29421714 DOI: 10.1016/j.bioorg.2018.01.031] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
21 Abutaleb NS, Elhassanny AEM, Nocentini A, Hewitt CS, Elkashif A, Cooper BR, Supuran CT, Seleem MN, Flaherty DP. Repurposing FDA-approved sulphonamide carbonic anhydrase inhibitors for treatment of Neisseria gonorrhoeae. J Enzyme Inhib Med Chem 2022;37:51-61. [PMID: 34894972 DOI: 10.1080/14756366.2021.1991336] [Reference Citation Analysis]
22 Borchert E, García-Moyano A, Sanchez-Carrillo S, Dahlgren TG, Slaby BM, Bjerga GEK, Ferrer M, Franzenburg S, Hentschel U. Deciphering a Marine Bone-Degrading Microbiome Reveals a Complex Community Effort. mSystems 2021;6:e01218-20. [PMID: 33563781 DOI: 10.1128/mSystems.01218-20] [Reference Citation Analysis]
23 Roger M, Reed TCP, Sargent F. Harnessing Escherichia coli for Bio-Based Production of Formate under Pressurized H2 and CO2 Gases. Appl Environ Microbiol 2021;87:e0029921. [PMID: 34647819 DOI: 10.1128/AEM.00299-21] [Reference Citation Analysis]
24 Angeli A, Del Prete S, Osman SM, AlOthman Z, Donald WA, Capasso C, Supuran CT. Activation Studies of the γ-Carbonic Anhydrases from the Antarctic Marine Bacteria Pseudoalteromonas haloplanktis and Colwellia psychrerythraea with Amino Acids and Amines. Mar Drugs 2019;17:E238. [PMID: 31013612 DOI: 10.3390/md17040238] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
25 Effendi SSW, Ng I. The prospective and potential of carbonic anhydrase for carbon dioxide sequestration: A critical review. Process Biochemistry 2019;87:55-65. [DOI: 10.1016/j.procbio.2019.08.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 5.7] [Reference Citation Analysis]
26 Del Prete S, De Luca V, Bua S, Nocentini A, Carginale V, Supuran CT, Capasso C. The Effect of Substituted Benzene-Sulfonamides and Clinically Licensed Drugs on the Catalytic Activity of CynT2, a Carbonic Anhydrase Crucial for Escherichia coli Life Cycle. Int J Mol Sci 2020;21:E4175. [PMID: 32545297 DOI: 10.3390/ijms21114175] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
27 Vullo D, Lehneck R, Donald WA, Pöggeler S, Supuran CT. Sulfonamide Inhibition Studies of the β-Class Carbonic Anhydrase CAS3 from the Filamentous Ascomycete Sordaria macrospora. Molecules 2020;25:E1036. [PMID: 32106611 DOI: 10.3390/molecules25051036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Russo ME, Capasso C, Marzocchella A, Salatino P. Immobilization of carbonic anhydrase for CO2 capture and utilization. Appl Microbiol Biotechnol 2022. [PMID: 35503472 DOI: 10.1007/s00253-022-11937-8] [Reference Citation Analysis]
29 Küçükbay H, Buğday N, Küçükbay FZ, Berrino E, Bartolucci G, Del Prete S, Capasso C, Supuran CT. Synthesis and carbonic anhydrase inhibitory properties of novel 4-(2-aminoethyl)benzenesulfonamide-dipeptide conjugates. Bioorg Chem 2019;83:414-23. [PMID: 30419497 DOI: 10.1016/j.bioorg.2018.11.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
30 Jo BH, Hwang IS. Characterization and High-Level Periplasmic Expression of Thermostable α-Carbonic Anhydrase from Thermosulfurimonas Dismutans in Escherichia Coli for CO2 Capture and Utilization. Int J Mol Sci 2019;21:E103. [PMID: 31877855 DOI: 10.3390/ijms21010103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
31 Kim S, Joo KI, Jo BH, Cha HJ. Stability-Controllable Self-Immobilization of Carbonic Anhydrase Fused with a Silica-Binding Tag onto Diatom Biosilica for Enzymatic CO 2 Capture and Utilization. ACS Appl Mater Interfaces 2020;12:27055-63. [DOI: 10.1021/acsami.0c03804] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
32 Angeli A, Ferraroni M, Da'dara AA, Selleri S, Pinteala M, Carta F, Skelly PJ, Supuran CT. Structural Insights into Schistosoma mansoni Carbonic Anhydrase (SmCA) Inhibition by Selenoureido-Substituted Benzenesulfonamides. J Med Chem 2021;64:10418-28. [PMID: 34232641 DOI: 10.1021/acs.jmedchem.1c00840] [Reference Citation Analysis]
33 Da'dara AA, Angeli A, Ferraroni M, Supuran CT, Skelly PJ. Crystal structure and chemical inhibition of essential schistosome host-interactive virulence factor carbonic anhydrase SmCA. Commun Biol 2019;2:333. [PMID: 31508507 DOI: 10.1038/s42003-019-0578-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
34 Del Prete S, Merlo R, Valenti A, Mattossovich R, Rossi M, Carginale V, Supuran CT, Perugino G, Capasso C. Thermostability enhancement of the α-carbonic anhydrase from Sulfurihydrogenibium yellowstonense by using the anchoring-and-self-labelling-protein-tag system (ASLtag). J Enzyme Inhib Med Chem 2019;34:946-54. [PMID: 31039618 DOI: 10.1080/14756366.2019.1605991] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
35 Lucarini E, Nocentini A, Bonardi A, Chiaramonte N, Parisio C, Micheli L, Toti A, Ferrara V, Carrino D, Pacini A, Romanelli MN, Supuran CT, Ghelardini C, Di Cesare Mannelli L. Carbonic Anhydrase IV Selective Inhibitors Counteract the Development of Colitis-Associated Visceral Pain in Rats. Cells 2021;10:2540. [PMID: 34685520 DOI: 10.3390/cells10102540] [Reference Citation Analysis]
36 Amedei A, Capasso C, Nannini G, Supuran CT. Microbiota, Bacterial Carbonic Anhydrases, and Modulators of Their Activity: Links to Human Diseases? Mediators Inflamm 2021;2021:6926082. [PMID: 34803517 DOI: 10.1155/2021/6926082] [Reference Citation Analysis]
37 D'Agostino I, Mathew GE, Angelini P, Venanzoni R, Angeles Flores G, Angeli A, Carradori S, Marinacci B, Menghini L, Abdelgawad MA, Ghoneim MM, Mathew B, Supuran CT. Biological investigation of N-methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors. J Enzyme Inhib Med Chem 2022;37:986-93. [PMID: 35322729 DOI: 10.1080/14756366.2022.2055009] [Reference Citation Analysis]
38 Flaherty DP, Seleem MN, Supuran CT. Bacterial carbonic anhydrases: underexploited antibacterial therapeutic targets. Future Med Chem 2021. [PMID: 34382415 DOI: 10.4155/fmc-2021-0207] [Reference Citation Analysis]
39 Campestre C, De Luca V, Carradori S, Grande R, Carginale V, Scaloni A, Supuran CT, Capasso C. Carbonic Anhydrases: New Perspectives on Protein Functional Role and Inhibition in Helicobacter pylori. Front Microbiol 2021;12:629163. [PMID: 33815311 DOI: 10.3389/fmicb.2021.629163] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
40 Walsh BJC, Giedroc DP. H2S and reactive sulfur signaling at the host-bacterial pathogen interface. J Biol Chem 2020;295:13150-68. [PMID: 32699012 DOI: 10.1074/jbc.REV120.011304] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
41 Moon H, Kim S, Jo BH, Cha HJ. Immobilization of genetically engineered whole-cell biocatalysts with periplasmic carbonic anhydrase in polyurethane foam for enzymatic CO2 capture and utilization. Journal of CO2 Utilization 2020;39:101172. [DOI: 10.1016/j.jcou.2020.101172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
42 Ali M, Angeli A, Bozdag M, Carta F, Capasso C, Farooq U, Supuran CT. Benzylaminoethylureido-Tailed Benzenesulfonamides Show Potent Inhibitory Activity against Bacterial Carbonic Anhydrases. ChemMedChem 2020;15:2444-7. [PMID: 32966693 DOI: 10.1002/cmdc.202000680] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 De Luca V, Petreni A, Carginale V, Scaloni A, Supuran CT, Capasso C. Effect of amino acids and amines on the activity of the recombinant ι-carbonic anhydrase from the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2021;36:1000-6. [PMID: 33980103 DOI: 10.1080/14756366.2021.1919891] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Bua S, Haapanen S, Kuuslahti M, Parkkila S, Supuran CT. Sulfonamide Inhibition Studies of a New β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. Int J Mol Sci 2018;19:E3946. [PMID: 30544802 DOI: 10.3390/ijms19123946] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
45 Angeli A, Prete SD, Ghobril C, Hitce J, Clavaud C, Marrat X, Donald WA, Capasso C, Supuran CT. Activation studies of the β-carbonic anhydrases from Malassezia restricta with amines and amino acids. J Enzyme Inhib Med Chem 2020;35:824-30. [PMID: 32216477 DOI: 10.1080/14756366.2020.1743284] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
46 Zamanova S, Shabana AM, Mondal UK, Ilies MA. Carbonic anhydrases as disease markers. Expert Opin Ther Pat 2019;29:509-33. [PMID: 31172829 DOI: 10.1080/13543776.2019.1629419] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
47 Kaisermann A, Jones S, Wohl S, Ogée J, Wingate L. Nitrogen Fertilization Reduces the Capacity of Soils to Take up Atmospheric Carbonyl Sulphide. Soil Syst 2018;2:62. [DOI: 10.3390/soilsystems2040062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
48 Oguz M, Kalay E, Akocak S, Nocentini A, Lolak N, Boga M, Yilmaz M, Supuran CT. Synthesis of calix[4]azacrown substituted sulphonamides with antioxidant, acetylcholinesterase, butyrylcholinesterase, tyrosinase and carbonic anhydrase inhibitory action. J Enzyme Inhib Med Chem 2020;35:1215-23. [PMID: 32401067 DOI: 10.1080/14756366.2020.1765166] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
49 Supuran CT, Capasso C. Biomedical applications of prokaryotic carbonic anhydrases. Expert Opin Ther Pat 2018;28:745-54. [PMID: 29973089 DOI: 10.1080/13543776.2018.1497161] [Cited by in Crossref: 38] [Cited by in F6Publishing: 46] [Article Influence: 9.5] [Reference Citation Analysis]
50 De Luca V, Angeli A, Mazzone V, Adelfio C, Carginale V, Scaloni A, Carta F, Selleri S, Supuran CT, Capasso C. Heterologous expression and biochemical characterisation of the recombinant β-carbonic anhydrase (MpaCA) from the warm-blooded vertebrate pathogen malassezia pachydermatis. J Enzyme Inhib Med Chem 2022;37:62-8. [PMID: 34894958 DOI: 10.1080/14756366.2021.1994559] [Reference Citation Analysis]
51 Maheshwari N, Kumar M, Thakur IS, Srivastava S. Cloning, expression and characterization of β- and γ‑carbonic anhydrase from Bacillus sp. SS105 for biomimetic sequestration of CO2. International Journal of Biological Macromolecules 2019;131:445-52. [DOI: 10.1016/j.ijbiomac.2019.03.082] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
52 Araújo WJ, Oliveira JS, Araújo SCS, Minnicelli CF, Silva-Portela RCB, da Fonseca MMB, Freitas JF, Silva-Barbalho KK, Napp AP, Pereira JES, Peralba MCR, Passaglia LMP, Vainstein MH, Agnez-Lima LF. Microbial Culture in Minimal Medium With Oil Favors Enrichment of Biosurfactant Producing Genes. Front Bioeng Biotechnol 2020;8:962. [PMID: 32850771 DOI: 10.3389/fbioe.2020.00962] [Reference Citation Analysis]
53 Salbitani G, Del Prete S, Bolinesi F, Mangoni O, De Luca V, Carginale V, Donald WA, Supuran CT, Carfagna S, Capasso C. Use of an immobilised thermostable α-CA (SspCA) for enhancing the metabolic efficiency of the freshwater green microalga Chlorella sorokiniana. J Enzyme Inhib Med Chem 2020;35:913-20. [PMID: 32223467 DOI: 10.1080/14756366.2020.1746785] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
54 Dalhoff A. Are antibacterial effects of non-antibiotic drugs random or purposeful because of a common evolutionary origin of bacterial and mammalian targets? Infection 2021;49:569-89. [PMID: 33325009 DOI: 10.1007/s15010-020-01547-9] [Reference Citation Analysis]
55 Supuran CT. Carbonic Anhydrases and Metabolism. Metabolites 2018;8:E25. [PMID: 29561812 DOI: 10.3390/metabo8020025] [Cited by in Crossref: 75] [Cited by in F6Publishing: 89] [Article Influence: 18.8] [Reference Citation Analysis]
56 Bozdag M, Carta F, Angeli A, Osman SM, Alasmary FAS, AlOthman Z, Supuran CT. Synthesis of N'-phenyl-N-hydroxyureas and investigation of their inhibitory activities on human carbonic anhydrases. Bioorg Chem 2018;78:1-6. [PMID: 29524665 DOI: 10.1016/j.bioorg.2018.02.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
57 Aspatwar A, Hammaren M, Parikka M, Parkkila S, Carta F, Bozdag M, Vullo D, Supuran CT. In vitro inhibition of Mycobacterium tuberculosis β-carbonic anhydrase 3 with Mono- and dithiocarbamates and evaluation of their toxicity using zebrafish developing embryos. J Enzyme Inhib Med Chem 2020;35:65-71. [PMID: 31663386 DOI: 10.1080/14756366.2019.1683007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
58 Supuran CT. Coumarin carbonic anhydrase inhibitors from natural sources. J Enzyme Inhib Med Chem 2020;35:1462-70. [PMID: 32779543 DOI: 10.1080/14756366.2020.1788009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
59 Wang J, Lonergan ZR, Gonzalez-Gutierrez G, Nairn BL, Maxwell CN, Zhang Y, Andreini C, Karty JA, Chazin WJ, Trinidad JC, Skaar EP, Giedroc DP. Multi-metal Restriction by Calprotectin Impacts De Novo Flavin Biosynthesis in Acinetobacter baumannii. Cell Chem Biol 2019;26:745-755.e7. [PMID: 30905682 DOI: 10.1016/j.chembiol.2019.02.011] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 11.7] [Reference Citation Analysis]
60 Supuran CT. Carbonic Anhydrase Inhibitor—NO Donor Hybrids and Their Pharmacological Applications. Therapeutic Application of Nitric Oxide in Cancer and Inflammatory Disorders. Elsevier; 2019. pp. 229-42. [DOI: 10.1016/b978-0-12-816545-4.00012-8] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
61 Varesio LM, Willett JW, Fiebig A, Crosson S. A Carbonic Anhydrase Pseudogene Sensitizes Select Brucella Lineages to Low CO2 Tension. J Bacteriol 2019;201:e00509-19. [PMID: 31481543 DOI: 10.1128/JB.00509-19] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
62 Hirakawa Y, Senda M, Fukuda K, Yu HY, Ishida M, Taira M, Kinbara K, Senda T. Characterization of a novel type of carbonic anhydrase that acts without metal cofactors. BMC Biol 2021;19:105. [PMID: 34006275 DOI: 10.1186/s12915-021-01039-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
63 Kundra P, Rachmühl C, Lacroix C, Geirnaert A. Role of Dietary Micronutrients on Gut Microbial Dysbiosis and Modulation in Inflammatory Bowel Disease. Mol Nutr Food Res 2021;65:1901271. [DOI: 10.1002/mnfr.201901271] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
64 Blandina P, Provensi G, Passsani MB, Capasso C, Supuran CT. Carbonic anhydrase modulation of emotional memory. Implications for the treatment of cognitive disorders. J Enzyme Inhib Med Chem 2020;35:1206-14. [PMID: 32401069 DOI: 10.1080/14756366.2020.1766455] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
65 Alfarouk KO, Bashir AHH, Aljarbou AN, Ramadan AM, Muddathir AK, AlHoufie STS, Hifny A, Elhassan GO, Ibrahim ME, Alqahtani SS, AlSharari SD, Supuran CT, Rauch C, Cardone RA, Reshkin SJ, Fais S, Harguindey S. The Possible Role of Helicobacter pylori in Gastric Cancer and Its Management. Front Oncol 2019;9:75. [PMID: 30854333 DOI: 10.3389/fonc.2019.00075] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
66 Del Prete S, Angeli A, Ghobril C, Hitce J, Clavaud C, Marat X, Supuran CT, Capasso C. Sulfonamide Inhibition Profile of the β-Carbonic Anhydrase from Malassezia restricta, An Opportunistic Pathogen Triggering Scalp Conditions. Metabolites 2020;10:E39. [PMID: 31963335 DOI: 10.3390/metabo10010039] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
67 Küçükbay H, Buğday N, Küçükbay FZ, Ageli A, Bartolucci G, Supuran CT. Synthesis and human carbonic anhydrase I, II, VA, and XII inhibition with novel amino acid-sulphonamide conjugates. J Enzyme Inhib Med Chem 2020;35:489-97. [PMID: 31914827 DOI: 10.1080/14756366.2019.1710503] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
68 Del Prete S, Vullo D, Zoccola D, Tambutté S, Supuran CT, Capasso C. Activation Profile Analysis of CruCA4, an α-Carbonic Anhydrase Involved in Skeleton Formation of the Mediterranean Red Coral, Corallium rubrum. Molecules 2017;23:E66. [PMID: 29283417 DOI: 10.3390/molecules23010066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
69 Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond) 2021;135:1233-49. [PMID: 34013961 DOI: 10.1042/CS20210040] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
70 Del Prete S, Bua S, Zoccola D, Alasmary FAS, AlOthman Z, Alqahtani LS, Techer N, Supuran CT, Tambutté S, Capasso C. Comparison of the Anion Inhibition Profiles of the α-CA Isoforms (SpiCA1, SpiCA2 and SpiCA3) from the Scleractinian Coral Stylophora pistillata. Int J Mol Sci 2018;19:E2128. [PMID: 30037122 DOI: 10.3390/ijms19072128] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
71 Rogato A, Del Prete S, Nocentini A, Carginale V, Supuran CT, Capasso C. Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of sulphonamide carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2019;34:510-8. [PMID: 30688123 DOI: 10.1080/14756366.2018.1559840] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
72 Dar'in D, Kantin G, Kalinin S, Sharonova T, Bunev A, Ostapenko GI, Nocentini A, Sharoyko V, Supuran CT, Krasavin M. Investigation of 3-sulfamoyl coumarins against cancer-related IX and XII isoforms of human carbonic anhydrase as well as cancer cells leads to the discovery of 2-oxo-2H-benzo[h]chromene-3-sulfonamide - A new caspase-activating proapoptotic agent. Eur J Med Chem 2021;222:113589. [PMID: 34147910 DOI: 10.1016/j.ejmech.2021.113589] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
73 Sharonova T, Paramonova P, Kalinin S, Bunev A, Gasanov RЕ, Nocentini A, Sharoyko V, Tennikova TB, Dar'in D, Supuran CT, Krasavin M. Insertion of metal carbenes into the anilinic N-H bond of unprotected aminobenzenesulfonamides delivers low nanomolar inhibitors of human carbonic anhydrase IX and XII isoforms. Eur J Med Chem 2021;218:113352. [PMID: 33774343 DOI: 10.1016/j.ejmech.2021.113352] [Reference Citation Analysis]
74 Yeo CI, Tiekink ERT, Chew J. Insights into the Antimicrobial Potential of Dithiocarbamate Anions and Metal-Based Species. Inorganics 2021;9:48. [DOI: 10.3390/inorganics9060048] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
75 Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020;30:963-82. [PMID: 32806966 DOI: 10.1080/13543776.2020.1811853] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
76 Ronci M, Del Prete S, Puca V, Carradori S, Carginale V, Muraro R, Mincione G, Aceto A, Sisto F, Supuran CT, Grande R, Capasso C. Identification and characterization of the α-CA in the outer membrane vesicles produced by Helicobacter pylori. J Enzyme Inhib Med Chem 2019;34:189-95. [PMID: 30734607 DOI: 10.1080/14756366.2018.1539716] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
77 Annunziato G, Giovati L, Angeli A, Pavone M, Del Prete S, Pieroni M, Capasso C, Bruno A, Conti S, Magliani W, Supuran CT, Costantino G. Discovering a new class of antifungal agents that selectively inhibits microbial carbonic anhydrases. J Enzyme Inhib Med Chem 2018;33:1537-44. [PMID: 30284487 DOI: 10.1080/14756366.2018.1516652] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
78 Angeli A, Ferraroni M, Pinteala M, Maier SS, Simionescu BC, Carta F, Del Prete S, Capasso C, Supuran CT. Crystal Structure of a Tetrameric Type II β-Carbonic Anhydrase from the Pathogenic Bacterium Burkholderia pseudomallei. Molecules 2020;25:E2269. [PMID: 32408533 DOI: 10.3390/molecules25102269] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
79 De Luca V, Angeli A, Mazzone V, Adelfio C, Carta F, Selleri S, Carginale V, Scaloni A, Supuran CT, Capasso C. Inhibitory Effects of Sulfonamide Derivatives on the β-Carbonic Anhydrase (MpaCA) from Malassezia pachydermatis, a Commensal, Pathogenic Fungus Present in Domestic Animals. Int J Mol Sci 2021;22:12601. [PMID: 34830480 DOI: 10.3390/ijms222212601] [Reference Citation Analysis]
80 Ozensoy Guler O, Supuran CT, Capasso C. Carbonic anhydrase IX as a novel candidate in liquid biopsy. J Enzyme Inhib Med Chem 2020;35:255-60. [PMID: 31790601 DOI: 10.1080/14756366.2019.1697251] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
81 Akdemir A, Angeli A, Göktaş F, Eraslan Elma P, Karalı N, Supuran CT. Novel 2-indolinones containing a sulfonamide moiety as selective inhibitors of candida β-carbonic anhydrase enzyme. J Enzyme Inhib Med Chem 2019;34:528-31. [PMID: 30724625 DOI: 10.1080/14756366.2018.1564045] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
82 De Luca V, Petreni A, Nocentini A, Scaloni A, Supuran CT, Capasso C. Effect of Sulfonamides and Their Structurally Related Derivatives on the Activity of ι-Carbonic Anhydrase from Burkholderia territorii. Int J Mol Sci 2021;22:E571. [PMID: 33430028 DOI: 10.3390/ijms22020571] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
83 Del Prete S, De Luca V, Nocentini A, Scaloni A, Mastrolorenzo MD, Supuran CT, Capasso C. Anion Inhibition Studies of the Beta-Carbonic Anhydrase from Escherichia coli. Molecules 2020;25:E2564. [PMID: 32486444 DOI: 10.3390/molecules25112564] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
84 Aspatwar A, Haapanen S, Parkkila S. An Update on the Metabolic Roles of Carbonic Anhydrases in the Model Alga Chlamydomonas reinhardtii. Metabolites 2018;8:E22. [PMID: 29534024 DOI: 10.3390/metabo8010022] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
85 Grande R, Carradori S, Puca V, Vitale I, Angeli A, Nocentini A, Bonardi A, Gratteri P, Lanuti P, Bologna G, Simeone P, Capasso C, De Luca V, Supuran CT. Selective Inhibition of Helicobacter pylori Carbonic Anhydrases by Carvacrol and Thymol Could Impair Biofilm Production and the Release of Outer Membrane Vesicles. Int J Mol Sci 2021;22:11583. [PMID: 34769015 DOI: 10.3390/ijms222111583] [Reference Citation Analysis]
86 Angeli A, Pinteala M, Maier SS, Simionescu BC, Milaneschi A, Abbas G, Del Prete S, Capasso C, Capperucci A, Tanini D, Carta F, Supuran CT. Evaluation of Thio- and Seleno-Acetamides Bearing Benzenesulfonamide as Inhibitor of Carbonic Anhydrases from Different Pathogenic Bacteria. Int J Mol Sci 2020;21:E598. [PMID: 31963423 DOI: 10.3390/ijms21020598] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
87 Mboge MY, Chen Z, Khokhar D, Wolff A, Ai L, Heldermon CD, Bozdag M, Carta F, Supuran CT, Brown KD, McKenna R, Frost CJ, Frost SC. A non-catalytic function of carbonic anhydrase IX contributes to the glycolytic phenotype and pH regulation in human breast cancer cells. Biochem J 2019;476:1497-513. [PMID: 31072911 DOI: 10.1042/BCJ20190177] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
88 Jensen EL, Maberly SC, Gontero B. Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae. Int J Mol Sci 2020;21:E2922. [PMID: 32331234 DOI: 10.3390/ijms21082922] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
89 Haapanen S, Bua S, Kuuslahti M, Parkkila S, Supuran CT. Cloning, Characterization and Anion Inhibition Studies of a β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. Molecules 2018;23:E3112. [PMID: 30486513 DOI: 10.3390/molecules23123112] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
90 Angeli A, Abbas G, del Prete S, Capasso C, Supuran CT. Selenides bearing benzenesulfonamide show potent inhibition activity against carbonic anhydrases from pathogenic bacteria Vibrio cholerae and Burkholderia pseudomallei. Bioorganic Chemistry 2018;79:319-22. [DOI: 10.1016/j.bioorg.2018.05.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
91 Hwang IS, Kim JH, Jo BH. Enhanced Production of a Thermostable Carbonic Anhydrase in Escherichia coli by Using a Modified NEXT Tag. Molecules 2021;26:5830. [PMID: 34641375 DOI: 10.3390/molecules26195830] [Reference Citation Analysis]