BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mehraban N, Freeman HS. Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production. Materials (Basel). 2015;8:4421-4456. [PMID: 28793448 DOI: 10.3390/ma8074421] [Cited by in Crossref: 96] [Cited by in F6Publishing: 110] [Article Influence: 13.7] [Reference Citation Analysis]
Number Citing Articles
1 Halaskova M, Kostelansky F, Demuth J, Hlbocanova I, Miletin M, Zimcik P, Machacek M, Novakova V. Amphiphilic Cationic Phthalocyanines for Photodynamic Therapy of Cancer. Chempluschem 2022;:e202200133. [PMID: 35880676 DOI: 10.1002/cplu.202200133] [Reference Citation Analysis]
2 Sarbadhikary P, George BP, Abrahamse H. Potential Application of Photosensitizers With High-Z Elements for Synergic Cancer Therapy. Front Pharmacol 2022;13:921729. [DOI: 10.3389/fphar.2022.921729] [Reference Citation Analysis]
3 Legabão BC, Fernandes JA, de Oliveira Barbosa GF, Bonfim-Mendonça PS, Svidzinski TIE. The zoonosis sporotrichosis can be successfully treated by photodynamic therapy: A scoping review. Acta Trop 2022;228:106341. [PMID: 35131203 DOI: 10.1016/j.actatropica.2022.106341] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Patel M, Prabhu A. Smart nanocomposite assemblies for multimodal cancer theranostics. Int J Pharm 2022;618:121697. [PMID: 35337903 DOI: 10.1016/j.ijpharm.2022.121697] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Thavornpradit S, Usama SM, Park GK, Dinh J, Choi HS, Burgess K. QuatCy-I2 and MHI-I2 in Photodynamic Therapy. ACS Med Chem Lett 2022;13:470-4. [PMID: 35300076 DOI: 10.1021/acsmedchemlett.1c00640] [Reference Citation Analysis]
6 Linares IA, Martinelli LP, Moritz MN, Selistre-de-araujo HS, de Oliveira KT, Rodrigues Perussi J. Cytotoxicity of structurally-modified chlorins aimed for photodynamic therapy applications. Journal of Photochemistry and Photobiology A: Chemistry 2022;425:113647. [DOI: 10.1016/j.jphotochem.2021.113647] [Reference Citation Analysis]
7 Feltrin FDS, Agner T, Sayer C, Lona LMF. Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Adv Colloid Interface Sci 2022;300:102582. [PMID: 34953375 DOI: 10.1016/j.cis.2021.102582] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 de França BM, Oliveira SS, Souza LO, Mello TP, Santos AL, Bello Forero JS. Synthesis and photophysical properties of metal complexes of curcumin dyes: Solvatochromism, acidochromism, and photoactivity. Dyes and Pigments 2022;198:110011. [DOI: 10.1016/j.dyepig.2021.110011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Aerssens D, Cadoni E, Tack L, Madder A. A Photosensitized Singlet Oxygen (1O2) Toolbox for Bio-Organic Applications: Tailoring 1O2 Generation for DNA and Protein Labelling, Targeting and Biosensing. Molecules 2022;27:778. [PMID: 35164045 DOI: 10.3390/molecules27030778] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Espitia-Almeida F, Díaz-Uribe C, Vallejo W, Gómez-Camargo D, Bohórquez ARR, Zarate X, Schott E. Photophysical characterization and in vitro anti-leishmanial effect of 5,10,15,20-tetrakis(4-fluorophenyl) porphyrin and the metal (Zn(II), Sn(IV), Mn(III) and V(IV)) derivatives. Biometals 2022. [PMID: 34993713 DOI: 10.1007/s10534-021-00357-2] [Reference Citation Analysis]
11 Zafon E, Echevarría I, Barrabés S, Manzano BR, Jalón FA, Rodríguez AM, Massaguer A, Espino G. Photodynamic therapy with mitochondria-targeted biscyclometallated Ir(III) complexes. Multi-action mechanism and strong influence of the cyclometallating ligand. Dalton Trans 2021;51:111-28. [PMID: 34873601 DOI: 10.1039/d1dt03080a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
12 Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021;179:114036. [PMID: 34740763 DOI: 10.1016/j.addr.2021.114036] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
13 Didamson OC, Abrahamse H. Targeted Photodynamic Diagnosis and Therapy for Esophageal Cancer: Potential Role of Functionalized Nanomedicine. Pharmaceutics 2021;13:1943. [PMID: 34834358 DOI: 10.3390/pharmaceutics13111943] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Digby EM, Ma T, Zipfel WR, Milstein JN, Beharry AA. Highly Potent Photoinactivation of Bacteria Using a Water-Soluble, Cell-Permeable, DNA-Binding Photosensitizer. ACS Infect Dis 2021;7:3052-61. [PMID: 34617443 DOI: 10.1021/acsinfecdis.1c00313] [Reference Citation Analysis]
15 Chibh S, Katoch V, Singh M, Prakash B, Panda JJ. Miniatured Fluidics-Mediated Modular Self-Assembly of Anticancer Drug-Amino Acid Composite Microbowls for Combined Chemo-Photodynamic Therapy in Glioma. ACS Biomater Sci Eng 2021. [PMID: 34724373 DOI: 10.1021/acsbiomaterials.1c01023] [Reference Citation Analysis]
16 Shang L, Zhou X, Zhang J, Shi Y, Zhong L. Metal Nanoparticles for Photodynamic Therapy: A Potential Treatment for Breast Cancer. Molecules 2021;26:6532. [PMID: 34770941 DOI: 10.3390/molecules26216532] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
17 Khisa J, Derese S, Mack J, Amuhaya E, Nyokong T. Synthesis, photophysical properties and photodynamic antimicrobial activity of meso 5,10,15,20-tetra(pyren-1-yl)porphyrin and its indium(III) complex. J Porphyrins Phthalocyanines 2021;25:794-9. [DOI: 10.1142/s1088424621500462] [Reference Citation Analysis]
18 Ren SZ, Zhu XH, Wang B, Liu M, Li SK, Yang YS, An H, Zhu HL. A versatile nanoplatform based on multivariate porphyrinic metal-organic frameworks for catalytic cascade-enhanced photodynamic therapy. J Mater Chem B 2021;9:4678-89. [PMID: 34075929 DOI: 10.1039/d0tb02652b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Martins Antunes de Melo WC, Celiešiūtė-Germanienė R, Šimonis P, Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence 2021;12:2247-72. [PMID: 34496717 DOI: 10.1080/21505594.2021.1960105] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Liu Z, Xie F, Xie J, Chen J, Li Y, Lin Q, Luo F, Yan J. New-generation photosensitizer-anchored gold nanorods for a single near-infrared light-triggered targeted photodynamic-photothermal therapy. Drug Deliv 2021;28:1769-84. [PMID: 34470548 DOI: 10.1080/10717544.2021.1960923] [Reference Citation Analysis]
21 Osaki T, Kunisue N, Ota U, Imazato H, Ishii T, Takahashi K, Ishizuka M, Tanaka T, Okamoto Y. Mechanism of Differential Susceptibility of Two (Canine Lung Adenocarcinoma) Cell Lines to 5-Aminolevulinic Acid-Mediated Photodynamic Therapy. Cancers (Basel) 2021;13:4174. [PMID: 34439326 DOI: 10.3390/cancers13164174] [Reference Citation Analysis]
22 Lange C, Bednarski PJ. In vitro assessment of synergistic effects in combinations of a temoporfin-based photodynamic therapy with glutathione peroxidase 1 inhibitors. Photodiagnosis Photodyn Ther 2021;36:102478. [PMID: 34375776 DOI: 10.1016/j.pdpdt.2021.102478] [Reference Citation Analysis]
23 Foglietta F, Pinnelli V, Giuntini F, Barbero N, Panzanelli P, Durando G, Terreno E, Serpe L, Canaparo R. Sonodynamic Treatment Induces Selective Killing of Cancer Cells in an In Vitro Co-Culture Model. Cancers (Basel) 2021;13:3852. [PMID: 34359753 DOI: 10.3390/cancers13153852] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Usama SM, Zhao B, Burgess K. Fluorescent kinase inhibitors as probes in cancer. Chem Soc Rev 2021;50:9794-816. [PMID: 34291273 DOI: 10.1039/d1cs00017a] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
25 Huang L, Asghar S, Zhu T, Ye P, Hu Z, Chen Z, Xiao Y. Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment. Expert Opin Drug Deliv 2021;:1-27. [PMID: 34253129 DOI: 10.1080/17425247.2021.1950685] [Reference Citation Analysis]
26 Peskova NN, Brilkina AA, Gorokhova AA, Shilyagina NY, Kutova OM, Nerush AS, Orlova AG, Klapshina LG, Vodeneev VV, Balalaeva IV. The localization of the photosensitizer determines the dynamics of the secondary production of hydrogen peroxide in cell cytoplasm and mitochondria. J Photochem Photobiol B 2021;219:112208. [PMID: 33989888 DOI: 10.1016/j.jphotobiol.2021.112208] [Reference Citation Analysis]
27 Turna O, Baykal A, Sozen Kucukkara E, Ozten O, Deveci Ozkan A, Guney Eskiler G, Kamanli AF, Bilir C, Yildiz SZ, Kaleli S, Ucmak M, Kasikci G, Lim HS. Efficacy of 5-aminolevulinic acid-based photodynamic therapy in different subtypes of canine mammary gland cancer cells. Lasers Med Sci 2021. [PMID: 33937952 DOI: 10.1007/s10103-021-03324-y] [Reference Citation Analysis]
28 Wei F, Rees TW, Liao X, Ji L, Chao H. Oxygen self-sufficient photodynamic therapy. Coordination Chemistry Reviews 2021;432:213714. [DOI: 10.1016/j.ccr.2020.213714] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
29 Li R, Chen Z, Dai Z, Yu Y. Nanotechnology assisted photo- and sonodynamic therapy for overcoming drug resistance. Cancer Biol Med 2021:j. [PMID: 33755377 DOI: 10.20892/j.issn.2095-3941.2020.0328] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
30 Su Z, Xiao Z, Huang J, Wang Y, An Y, Xiao H, Peng Y, Pang P, Han S, Zhu K, Shuai X. Dual-Sensitive PEG-Sheddable Nanodrug Hierarchically Incorporating PD-L1 Antibody and Zinc Phthalocyanine for Improved Immuno-Photodynamic Therapy. ACS Appl Mater Interfaces 2021;13:12845-56. [DOI: 10.1021/acsami.0c20422] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Xiao J, Cong H, Wang S, Yu B, Shen Y. Recent research progress in the construction of active free radical nanoreactors and their applications in photodynamic therapy. Biomater Sci 2021;9:2384-412. [PMID: 33576752 DOI: 10.1039/d0bm02013c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
32 Martins TJ, Negri LB, Pernomian L, Faial KDCF, Xue C, Akhimie RN, Hamblin MR, Turro C, da Silva RS. The Influence of Some Axial Ligands on Ruthenium-Phthalocyanine Complexes: Chemical, Photochemical, and Photobiological Properties. Front Mol Biosci 2020;7:595830. [PMID: 33511155 DOI: 10.3389/fmolb.2020.595830] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
33 Kubheka G, Babu B, Prinsloo E, Kobayashi N, Mack J, Nyokong T. Photodynamic activity of 2,6-dibrominated dimethylaminophenylbuta-1,3-dienylBODIPY dyes. J Porphyrins Phthalocyanines 2021;25:47-55. [DOI: 10.1142/s1088424620500509] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Gettemans J, De Dobbelaer B. Transforming nanobodies into high-precision tools for protein function analysis. Am J Physiol Cell Physiol 2021;320:C195-215. [PMID: 33264078 DOI: 10.1152/ajpcell.00435.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
35 Zhang C, Qin W, Bai X, Zhang X. Nanomaterials to relieve tumor hypoxia for enhanced photodynamic therapy. Nano Today 2020;35:100960. [DOI: 10.1016/j.nantod.2020.100960] [Cited by in Crossref: 21] [Cited by in F6Publishing: 37] [Article Influence: 10.5] [Reference Citation Analysis]
36 Tang X, Wang Z, Zhu Y, Xiao H, Xiao Y, Cui S, Lin B, Yang K, Liu H. Hypoxia-activated ROS burst liposomes boosted by local mild hyperthermia for photo/chemodynamic therapy. Journal of Controlled Release 2020;328:100-11. [DOI: 10.1016/j.jconrel.2020.08.035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
37 Szlasa W, Supplitt S, Drąg-Zalesińska M, Przystupski D, Kotowski K, Szewczyk A, Kasperkiewicz P, Saczko J, Kulbacka J. Effects of curcumin based PDT on the viability and the organization of actin in melanotic (A375) and amelanotic melanoma (C32) - in vitro studies. Biomed Pharmacother 2020;132:110883. [PMID: 33113417 DOI: 10.1016/j.biopha.2020.110883] [Cited by in Crossref: 1] [Cited by in F6Publishing: 14] [Article Influence: 0.5] [Reference Citation Analysis]
38 Jiang S, Xiao M, Sun W, Crespy D, Mailänder V, Peng X, Fan J, Landfester K. Synergistic Anticancer Therapy by Ovalbumin Encapsulation‐Enabled Tandem Reactive Oxygen Species Generation. Angew Chem 2020;132:20183-91. [DOI: 10.1002/ange.202006649] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
39 Jiang S, Xiao M, Sun W, Crespy D, Mailänder V, Peng X, Fan J, Landfester K. Synergistic Anticancer Therapy by Ovalbumin Encapsulation-Enabled Tandem Reactive Oxygen Species Generation. Angew Chem Int Ed Engl 2020;59:20008-16. [PMID: 32686218 DOI: 10.1002/anie.202006649] [Cited by in Crossref: 7] [Cited by in F6Publishing: 29] [Article Influence: 3.5] [Reference Citation Analysis]
40 Suzuki T, Tanaka M, Sasaki M, Ichikawa H, Nishie H, Kataoka H. Vascular Shutdown by Photodynamic Therapy Using Talaporfin Sodium. Cancers (Basel) 2020;12:E2369. [PMID: 32825648 DOI: 10.3390/cancers12092369] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
41 Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12(7): 562-584 [PMID: 32843914 DOI: 10.4252/wjsc.v12.i7.562] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
42 Souza EF, Ambrósio JAR, Pinto BCS, Beltrame M, Sakane KK, Pinto JG, Ferreira-Strixino J, Gonçalves EP, Simioni AR. Vaterite submicron particles designed for photodynamic therapy in cells. Photodiagnosis Photodyn Ther 2020;31:101913. [PMID: 32645435 DOI: 10.1016/j.pdpdt.2020.101913] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Lin C, Zhang Y, Zhao Q, Sun P, Gao Z, Cui S. Analysis of the short-term effect of photodynamic therapy on primary bronchial lung cancer. Lasers Med Sci 2021;36:753-61. [PMID: 32594348 DOI: 10.1007/s10103-020-03080-5] [Reference Citation Analysis]
44 Nasr S, Rady M, Sebak A, Gomaa I, Fayad W, Gaafary ME, Abdel-Kader M, Syrovets T, Simmet T. A Naturally Derived Carrier for Photodynamic Treatment of Squamous Cell Carcinoma: In Vitro and In Vivo Models. Pharmaceutics 2020;12:E494. [PMID: 32485800 DOI: 10.3390/pharmaceutics12060494] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
45 Chi YF, Qin JJ, Li Z, Ge Q, Zeng WH. Enhanced anti-tumor efficacy of 5-aminolevulinic acid-gold nanoparticles-mediated photodynamic therapy in cutaneous squamous cell carcinoma cells. Braz J Med Biol Res 2020;53:e8457. [PMID: 32348428 DOI: 10.1590/1414-431x20208457] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
46 Ng SY, Kamkaew A, Fu N, Kue CS, Chung LY, Kiew LV, Wittayakun J, Burgess K, Lee HB. Active targeted ligand-aza-BODIPY conjugate for near-infrared photodynamic therapy in melanoma. International Journal of Pharmaceutics 2020;579:119189. [DOI: 10.1016/j.ijpharm.2020.119189] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
47 Nag S, Bagchi D, Chattopadhyay D, Bhattacharyya M, Pal SK. Protein assembled nano-vehicle entrapping photosensitizer molecules for efficient lung carcinoma therapy. Int J Pharm 2020;580:119192. [PMID: 32126250 DOI: 10.1016/j.ijpharm.2020.119192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
48 Shumatbaeva AM, Morozova JE, Syakaev VV, Shalaeva YV, Sapunova AS, Voloshina AD, Gubaidullin AT, Bazanova OB, Babaev VM, Nizameev IR, Kadirov MK, Antipin IS. The pH-responsive calix[4]resorcinarene-mPEG conjugates bearing acylhydrazone bonds: Synthesis and study of the potential as supramolecular drug delivery systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;589:124453. [DOI: 10.1016/j.colsurfa.2020.124453] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
49 Cheng Y, Hu J, Qin S, Zhang A, Zhang X. Recent advances in functional mesoporous silica-based nanoplatforms for combinational photo-chemotherapy of cancer. Biomaterials 2020;232:119738. [DOI: 10.1016/j.biomaterials.2019.119738] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
50 Dubey SK, Pradyuth SK, Saha RN, Singhvi G, Alexander A, Agrawal M, Shapiro BA, Puri A. Application of photodynamic therapy drugs for management of glioma. J Porphyrins Phthalocyanines 2019;23:1216-28. [DOI: 10.1142/s1088424619300192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
51 Nompumelelo Simelane NW, Kruger CA, Abrahamse H. Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo. RSC Adv 2020;10:41560-76. [DOI: 10.1039/d0ra08617g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
52 Kohle FFE, Li S, Turker MZ, Wiesner UB. Ultrasmall PEGylated and Targeted Core-Shell Silica Nanoparticles Carrying Methylene Blue Photosensitizer. ACS Biomater Sci Eng 2020;6:256-64. [PMID: 33463188 DOI: 10.1021/acsbiomaterials.9b01359] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Lin F, Jia HR, Wu FG. Glycol Chitosan: A Water-Soluble Polymer for Cell Imaging and Drug Delivery. Molecules 2019;24:E4371. [PMID: 31795385 DOI: 10.3390/molecules24234371] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
54 Freitag L, Ma Y, Baiardi A, Knecht S, Reiher M. Approximate Analytical Gradients and Nonadiabatic Couplings for the State-Average Density Matrix Renormalization Group Self-Consistent-Field Method. J Chem Theory Comput 2019;15:6724-37. [PMID: 31670947 DOI: 10.1021/acs.jctc.9b00969] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
55 Gebremedhin KH, Li M, Gao F, Gurram B, Fan J, Wang J, Li Y, Peng X. Benzo[a]phenoselenazine-based NIR photosensitizer for tumor-targeting photodynamic therapy via lysosomal-disruption pathway. Dyes and Pigments 2019;170:107617. [DOI: 10.1016/j.dyepig.2019.107617] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
56 Mohammed I, Oluwole DO, Nemakal M, Sannegowda LK, Nyokong T. Investigation of novel substituted zinc and aluminium phthalocyanines for photodynamic therapy of epithelial breast cancer. Dyes and Pigments 2019;170:107592. [DOI: 10.1016/j.dyepig.2019.107592] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
57 Zhang XF, Xu B. Organo metal halide perovskites effectively photosensitize the production of singlet oxygen (1Δg). Chem Commun (Camb) 2019;55:13100-3. [PMID: 31612179 DOI: 10.1039/c9cc06397h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
58 Khurana R, Kakatkar AS, Chatterjee S, Barooah N, Kunwar A, Bhasikuttan AC, Mohanty J. Supramolecular Nanorods of (N-Methylpyridyl) Porphyrin With Captisol: Effective Photosensitizer for Anti-bacterial and Anti-tumor Activities. Front Chem 2019;7:452. [PMID: 31294017 DOI: 10.3389/fchem.2019.00452] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
59 Reis ACM, Regis WFM, Rodrigues LKA. Scientific evidence in antimicrobial photodynamic therapy: An alternative approach for reducing cariogenic bacteria. Photodiagnosis and Photodynamic Therapy 2019;26:179-89. [DOI: 10.1016/j.pdpdt.2019.03.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
60 Munegowda MA, Fisher C, Molehuis D, Foltz W, Roufaiel M, Bassan J, Nitz M, Mandel A, Lilge L. Efficacy of ruthenium coordination complex-based Rutherrin in a preclinical rat glioblastoma model. Neurooncol Adv 2019;1:vdz006. [PMID: 32642649 DOI: 10.1093/noajnl/vdz006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
61 Sakamaki Y, Ozdemir J, Heidrick Z, Watson O, Shahsavari HR, Fereidoonnezhad M, Khosropour AR, Beyzavi MH. Metal–Organic Frameworks and Covalent Organic Frameworks as Platforms for Photodynamic Therapy. Comments on Inorganic Chemistry 2018;38:238-93. [DOI: 10.1080/02603594.2018.1542597] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
62 Mehraban N, Musich P, Freeman H. Synthesis and Encapsulation of a New Zinc Phthalocyanine Photosensitizer into Polymeric Nanoparticles to Enhance Cell Uptake and Phototoxicity. Applied Sciences 2019;9:401. [DOI: 10.3390/app9030401] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
63 Tzeli D, Petsalakis ID. Physical Insights into Molecular Sensors, Molecular Logic Gates, and Photosensitizers in Photodynamic Therapy. Journal of Chemistry 2019;2019:1-9. [DOI: 10.1155/2019/6793490] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
64 Niu N, Zhou H, Liu N, Jiang H, Hussain E, Hu Z, Yu C. A smart perylene derived photosensitizer for lysosome-targeted and self-assessed photodynamic therapy. Chem Commun 2019;55:1036-9. [DOI: 10.1039/c8cc09396b] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
65 Xing R, Liu Y, Zou Q, Yan X. Self-assembled injectable biomolecular hydrogels towards phototherapy. Nanoscale 2019;11:22182-95. [DOI: 10.1039/c9nr06266a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 31] [Article Influence: 5.7] [Reference Citation Analysis]
66 Digby EM, Rana R, Nitz M, Beharry AA. DNA directed damage using a brominated DAPI derivative. Chem Commun 2019;55:9971-4. [DOI: 10.1039/c9cc03942b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
67 Yan S, Huang Q, Song X, Chen Z, Huang M, Zhang J. A series of photosensitizers with incremental positive electric charges for photodynamic antitumor therapy. RSC Adv 2019;9:24560-7. [DOI: 10.1039/c9ra03486b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
68 De Vetta M, Baig O, Steen D, Nogueira JJ, González L. Assessing Configurational Sampling in the Quantum Mechanics/Molecular Mechanics Calculation of Temoporfin Absorption Spectrum and Triplet Density of States. Molecules 2018;23:E2932. [PMID: 30424014 DOI: 10.3390/molecules23112932] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
69 Matsumoto J, Takemori K, Ishikawa J, Nabetani Y, Fujitsuka M, Majima T, Yasuda M. Synthesis and spectroscopic analysis of benzylidene imidazolone linked to P-porphyrins through axial ligand. Med Chem Res 2018;27:2530-7. [DOI: 10.1007/s00044-018-2255-0] [Reference Citation Analysis]
70 Ravikumar M, Raghav D, Rathinasamy K, Kathiravan A, Mothi EM. DNA Targeting Long-Chain Alkoxy Appended Tin(IV) Porphyrin Scaffolds: Photophysical and Antimicrobial PDT Investigations. ACS Appl Bio Mater 2018;1:1705-16. [DOI: 10.1021/acsabm.8b00507] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
71 De vetta M, González L, Corral I. The Role of Electronic Triplet States and High‐Lying Singlet States in the Deactivation Mechanism of the Parent BODIPY: An ADC(2) and CASPT2 Study. ChemPhotoChem 2019;3:727-38. [DOI: 10.1002/cptc.201800169] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
72 Usama SM, Thavornpradit S, Burgess K. Optimized Heptamethine Cyanines for Photodynamic Therapy. ACS Appl Bio Mater 2018;1:1195-205. [DOI: 10.1021/acsabm.8b00414] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
73 Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 2018;106:1098-107. [PMID: 30119176 DOI: 10.1016/j.biopha.2018.07.049] [Cited by in Crossref: 356] [Cited by in F6Publishing: 310] [Article Influence: 89.0] [Reference Citation Analysis]
74 Sun J, Kormakov S, Liu Y, Huang Y, Wu D, Yang Z. Recent Progress in Metal-Based Nanoparticles Mediated Photodynamic Therapy. Molecules 2018;23:E1704. [PMID: 30002333 DOI: 10.3390/molecules23071704] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
75 Tang XL, Wu J, Lin BL, Cui S, Liu HM, Yu RT, Shen XD, Wang TW, Xia W. Near-infrared light-activated red-emitting upconverting nanoplatform for T1-weighted magnetic resonance imaging and photodynamic therapy. Acta Biomater 2018;74:360-73. [PMID: 29763715 DOI: 10.1016/j.actbio.2018.05.017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
76 Vetta M, González L, Nogueira JJ. Hydrogen Bonding Regulates the Rigidity of Liposome-Encapsulated Chlorin Photosensitizers. ChemistryOpen 2018;7:475-83. [PMID: 29938159 DOI: 10.1002/open.201800050] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
77 Pibiri I, Buscemi S, Palumbo piccionello A, Pace A. Photochemically Produced Singlet Oxygen: Applications and Perspectives. ChemPhotoChem 2018;2:535-47. [DOI: 10.1002/cptc.201800076] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
78 Mokwena MG, Kruger CA, Ivan M, Heidi A. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photodiagnosis and Photodynamic Therapy 2018;22:147-54. [DOI: 10.1016/j.pdpdt.2018.03.006] [Cited by in Crossref: 58] [Cited by in F6Publishing: 69] [Article Influence: 14.5] [Reference Citation Analysis]
79 Youssef Z, Jouan-Hureaux V, Colombeau L, Arnoux P, Moussaron A, Baros F, Toufaily J, Hamieh T, Roques-Carmes T, Frochot C. Titania and silica nanoparticles coupled to Chlorin e6 for anti-cancer photodynamic therapy. Photodiagnosis Photodyn Ther 2018;22:115-26. [PMID: 29581041 DOI: 10.1016/j.pdpdt.2018.03.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
80 van Lith SA, van den Brand D, Wallbrecher R, Wübbeke L, van Duijnhoven SM, Mäkinen PI, Hoogstad-van Evert JS, Massuger L, Ylä-herttuala S, Brock R, Leenders WP. The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates. European Journal of Pharmaceutics and Biopharmaceutics 2018;124:63-72. [DOI: 10.1016/j.ejpb.2017.12.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
81 Ibarra LE, Porcal GV, Macor LP, Ponzio RA, Spada RM, Lorente C, Chesta CA, Rivarola VA, Palacios RE. Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells. Nanomedicine 2018;13:605-24. [DOI: 10.2217/nnm-2017-0292] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
82 Cao F, Guo Y, Li Y, Tang S, Yang Y, Yang H, Xiong L. Fast and Accurate Imaging of Lymph Node Metastasis with Multifunctional Near-Infrared Polymer Dots. Adv Funct Mater 2018;28:1707174. [DOI: 10.1002/adfm.201707174] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
83 Kalashnikova I, Baulin V. Synthesis of Water-Soluble Phthalocyanines and Modification of their Peripheral Fragments as a Method of Directed Changes in Lipophilic-Hydrophilic Properties. BMCRM 2018;1:e00024. [DOI: 10.18097/bmcrm00024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
84 Yan S, Song X, Liu Y, Dai T, Huang M, Chen X, Chen Z. An efficient synergistic cancer therapy by integrating cell cycle inhibitor and photosensitizer into polydopamine nanoparticles. J Mater Chem B 2018;6:2620-9. [DOI: 10.1039/c8tb00076j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
85 Gonçalves JLDS, Bernal C, Imasato H, Perussi JR. Hypericin cytotoxicity in tumor and non-tumor cell lines: A chemometric study. Photodiagnosis and Photodynamic Therapy 2017;20:86-90. [DOI: 10.1016/j.pdpdt.2017.08.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
86 Matsumoto J, Suzuki K, Yasuda M, Yamaguchi Y, Hishikawa Y, Imamura N, Nanashima A. Photodynamic therapy of human biliary cancer cell line using combination of phosphorus porphyrins and light emitting diode. Bioorg Med Chem 2017;25:6536-41. [PMID: 29108834 DOI: 10.1016/j.bmc.2017.10.031] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
87 Hodgkinson N, Kruger CA, Abrahamse H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol. 2017;39:1010428317734691. [PMID: 28990490 DOI: 10.1177/1010428317734691] [Cited by in Crossref: 31] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
88 Bhattacharyya U, Kumar B, Garai A, Bhattacharyya A, Kumar A, Banerjee S, Kondaiah P, Chakravarty AR. Curcumin "Drug" Stabilized in Oxidovanadium(IV)-BODIPY Conjugates for Mitochondria-Targeted Photocytotoxicity. Inorg Chem 2017;56:12457-68. [PMID: 28972748 DOI: 10.1021/acs.inorgchem.7b01924] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 6.8] [Reference Citation Analysis]
89 Liu Y, Hu X, Wang L, Liu X, Bing T, Tan W, Shangguan D. Quinacridone derivative as a new photosensitizer: Photodynamic effects in cells and in vivo. Dyes and Pigments 2017;145:168-73. [DOI: 10.1016/j.dyepig.2017.06.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
90 Zhang XF, Feng N. Photoinduced Electron Transfer-based Halogen-free Photosensitizers: Covalent meso-Aryl (Phenyl, Naphthyl, Anthryl, and Pyrenyl) as Electron Donors to Effectively Induce the Formation of the Excited Triplet State and Singlet Oxygen for BODIPY Compounds. Chem Asian J 2017;12:2447-56. [PMID: 28703483 DOI: 10.1002/asia.201700794] [Cited by in Crossref: 50] [Cited by in F6Publishing: 57] [Article Influence: 10.0] [Reference Citation Analysis]
91 Zhang XF, Feng N. Attaching naphthalene derivatives onto BODIPY for generating excited triplet state and singlet oxygen: Tuning PET-based photosensitizer by electron donors. Spectrochim Acta A Mol Biomol Spectrosc 2018;189:13-21. [PMID: 28787622 DOI: 10.1016/j.saa.2017.08.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
92 Cabir B, Ağırtaş MS, Duygulu E, Yuksel F. Synthesis of some metallophthalocyanines bearing 9-phenyl-9H-fluoren-9-yl) oxy functional groups and investigation of their photophysical properties. Journal of Molecular Structure 2017;1142:194-9. [DOI: 10.1016/j.molstruc.2017.04.060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
93 Bagchi D, Dutta S, Singh P, Chaudhuri S, Pal SK. Essential Dynamics of an Effective Phototherapeutic Drug in a Nanoscopic Delivery Vehicle: Psoralen in Ethosomes for Biofilm Treatment. ACS Omega 2017;2:1850-7. [PMID: 30023647 DOI: 10.1021/acsomega.7b00187] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
94 Dzhardimalieva GI, Uflyand IE. Review: recent advances in the chemistry of metal chelate monomers. Journal of Coordination Chemistry 2017;70:1468-527. [DOI: 10.1080/00958972.2017.1317347] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 4.2] [Reference Citation Analysis]
95 Kim S, Ahn SM, Lee J, Kim TS, Min D. Functional manganese dioxide nanosheet for targeted photodynamic therapy and bioimaging in vitro and in vivo. 2D Mater 2017;4:025069. [DOI: 10.1088/2053-1583/aa652f] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
96 Malatesti N, Munitic I, Jurak I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophys Rev 2017;9:149-68. [PMID: 28510089 DOI: 10.1007/s12551-017-0257-7] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 10.0] [Reference Citation Analysis]
97 Hu X, Ogawa K, Kiwada T, Odani A. Water-soluble metalloporphyrinates with excellent photo-induced anticancer activity resulting from high tumor accumulation. J Inorg Biochem 2017;170:1-7. [PMID: 28189031 DOI: 10.1016/j.jinorgbio.2017.02.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
98 Kuno S, Kanamori T, Yijing Z, Ohtani H, Yuasa H. Long Persistent Phosphorescence of Crystalline Phenylboronic Acid Derivatives: Photophysics and a Mechanistic Study. ChemPhotoChem 2017;1:102-6. [DOI: 10.1002/cptc.201600031] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 8.0] [Reference Citation Analysis]
99 Brezaniova I, Trousil J, Cernochova Z, Kral V, Hruby M, Stepanek P, Slouf M. Self-assembled chitosan-alginate polyplex nanoparticles containing temoporfin. Colloid Polym Sci 2017;295:1259-70. [DOI: 10.1007/s00396-016-3992-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.6] [Reference Citation Analysis]
100 Dang J, He H, Chen D, Yin L. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater Sci 2017;5:1500-11. [DOI: 10.1039/c7bm00392g] [Cited by in Crossref: 138] [Cited by in F6Publishing: 175] [Article Influence: 27.6] [Reference Citation Analysis]
101 Topal SZ, Ün ŞŞ, Bretonnière Y, Kostakoğlu ST. New designed naphthalimide-phthalocyanine pentads: Synthesis, photophysical and photochemical properties in DMSO and room temperature ionic liquids. Journal of Photochemistry and Photobiology A: Chemistry 2017;332:562-70. [DOI: 10.1016/j.jphotochem.2016.09.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
102 Oszajca M, Brindell M, Orzeł Ł, Dąbrowski JM, Śpiewak K, Łabuz P, Pacia M, Stochel-gaudyn A, Macyk W, van Eldik R, Stochel G. Mechanistic studies on versatile metal-assisted hydrogen peroxide activation processes for biomedical and environmental incentives. Coordination Chemistry Reviews 2016;327-328:143-65. [DOI: 10.1016/j.ccr.2016.05.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
103 Ai X, Mu J, Xing B. Recent Advances of Light-Mediated Theranostics. Theranostics 2016;6:2439-57. [PMID: 27877246 DOI: 10.7150/thno.16088] [Cited by in Crossref: 123] [Cited by in F6Publishing: 121] [Article Influence: 20.5] [Reference Citation Analysis]
104 Matsumoto J, Kai Y, Yokoi H, Okazaki S, Yasuda M. Assistance of human serum albumin to photo-sensitized inactivation of Saccharomyces cerevisiae with axially pyridinio-bonded P-porphyrins. Journal of Photochemistry and Photobiology B: Biology 2016;161:279-83. [DOI: 10.1016/j.jphotobiol.2016.05.024] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
105 Dzhardimalieva GI, Uflyand IE. Metal Chelate Monomers as Precursors of Polymeric Materials. J Inorg Organomet Polym 2016;26:1112-73. [DOI: 10.1007/s10904-016-0418-3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
106 Costa LD, e Silva Jde A, Fonseca SM, Arranja CT, Urbano AM, Sobral AJ. Photophysical Characterization and in Vitro Phototoxicity Evaluation of 5,10,15,20-Tetra(quinolin-2-yl)porphyrin as a Potential Sensitizer for Photodynamic Therapy. Molecules 2016;21:439. [PMID: 27043519 DOI: 10.3390/molecules21040439] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
107 Lacombe S, Pigot T. Materials for selective photo-oxygenation vs. photocatalysis: preparation, properties and applications in environmental and health fields. Catal Sci Technol 2016;6:1571-92. [DOI: 10.1039/c5cy01929j] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 7.0] [Reference Citation Analysis]
108 Galstyan A, Riehemann K, Schäfers M, Faust A. A combined experimental and computational study of the substituent effect on the photodynamic efficacy of amphiphilic Zn( ii )phthalocyanines. J Mater Chem B 2016;4:5683-91. [DOI: 10.1039/c6tb01341d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
109 Buglak AA, Telegina TA, Kritsky MS. A quantitative structure–property relationship (QSPR) study of singlet oxygen generation by pteridines. Photochem Photobiol Sci 2016;15:801-11. [DOI: 10.1039/c6pp00084c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
110 Asem H, El-Fattah AA, Nafee N, Zhao Y, Khalil L, Muhammed M, Hassan M, Kandil S. Development and biodistribution of a theranostic aluminum phthalocyanine nanophotosensitizer. Photodiagnosis Photodyn Ther 2016;13:48-57. [PMID: 26708297 DOI: 10.1016/j.pdpdt.2015.12.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.1] [Reference Citation Analysis]