BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Alabastri A, Tuccio S, Giugni A, Toma A, Liberale C, Das G, Angelis F, Fabrizio ED, Zaccaria RP. Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature. Materials (Basel) 2013;6:4879-910. [PMID: 28788366 DOI: 10.3390/ma6114879] [Cited by in Crossref: 84] [Cited by in F6Publishing: 83] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Cherian T, Maity D, Rajendra Kumar RT, Balasubramani G, Ragavendran C, Yalla S, Mohanraju R, Peijnenburg WJGM. Green Chemistry Based Gold Nanoparticles Synthesis Using the Marine Bacterium Lysinibacillus odysseyi PBCW2 and Their Multitudinous Activities. Nanomaterials 2022;12:2940. [DOI: 10.3390/nano12172940] [Reference Citation Analysis]
2 Ciancio A, Ciancio V, d’Onofrio A, Flora BFF. A Fractional Model of Complex Permittivity of Conductor Media with Relaxation: Theory vs. Experiments. Fractal Fract 2022;6:390. [DOI: 10.3390/fractalfract6070390] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Cunha J, Alabastri A, Proietti Zaccaria R. Heat and Temperature Localization via Fabry–Pérot Resonances at the Tip of a Nanofocusing Cone. Advanced Optical Materials. [DOI: 10.1002/adom.202200746] [Reference Citation Analysis]
4 Taha T, Mehaney A, Elsayed HA. Detection of heavy metals using one-dimensional gyroidal photonic crystals for effective water treatment. Materials Chemistry and Physics 2022;285:126125. [DOI: 10.1016/j.matchemphys.2022.126125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
5 Kumela AG, Gemta AB, Desta TA, Kebede A. Noble classical and quantum approach to model the optical properties of metallic nanoparticles to enhance the sensitivity of optoplasmonic sensors. RSC Adv 2022;12:16203-14. [PMID: 35755132 DOI: 10.1039/d2ra00824f] [Reference Citation Analysis]
6 Danlard I, Mensah IO, Akowuah EK. Design and numerical analysis of a fractal cladding PCF-based plasmonic sensor for refractive index, temperature, and magnetic field. Optik 2022;258:168893. [DOI: 10.1016/j.ijleo.2022.168893] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Khosravi Khorashad L, Argyropoulos C. Unraveling the temperature dynamics and hot electron generation in tunable gap-plasmon metasurface absorbers. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Mazandarani HR, Ghafary B, Alam SN. Optimization of UVB photodiode based on ZnO nanorod arrays grown via the hydrothermal process. Optical Materials 2022;126:112047. [DOI: 10.1016/j.optmat.2022.112047] [Reference Citation Analysis]
9 Mupparapu R, Cunha J, Tantussi F, Jacassi A, Summerer L, Patrini M, Giugni A, Maserati L, Alabastri A, Garoli D, Proietti Zaccaria R. High‐Frequency Light Rectification by Nanoscale Plasmonic Conical Antenna in Point‐Contact‐Insulator‐Metal Architecture. Advanced Energy Materials. [DOI: 10.1002/aenm.202103785] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Alrowaili ZA, Elsayed HA, Ahmed AM, Taha TA, Mehaney A. Simple, efficient and accurate method toward the monitoring of ethyl butanoate traces. Opt Quant Electron 2022;54. [DOI: 10.1007/s11082-021-03497-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Valenzuela-fernández RA, Cardin J, Portier X, Labbé C, Segura C, Vargas V, Galdámez A, Osorio-román IO. Surface-enhanced luminescence of Cr 3+ -doped ZnAl 2 O 4 and MgAl 2 O 4 using Ag@SiO 2 and Au@SiO 2 core–shell nanoparticles. Mater Adv . [DOI: 10.1039/d2ma00217e] [Reference Citation Analysis]
12 Sørensen LK, Khrennikov DE, Gerasimov VS, Ershov AE, Vysotin MA, Monti S, Zakomirnyi VI, Polyutov SP, Ågren H, Karpov SV. Thermal degradation of optical resonances in plasmonic nanoparticles. Nanoscale 2021. [PMID: 34904987 DOI: 10.1039/d1nr06444d] [Reference Citation Analysis]
13 Etemadi M, Golmohammadi S, Akbarzadeh A, Rasta SH, Sarbaz Y. Optical plasmonic star-shaped nanoprobes for intracellular sensing and imaging. Opt Quant Electron 2021;53. [DOI: 10.1007/s11082-021-03304-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Mehaney A, Alrowaili Z, Elsayed HA, Taha T, Ahmed AM. Theoretical investigations of Tamm plasmon resonance for monitoring of isoprene traces in the exhaled breath: Towards chronic liver fibrosis disease biomarkers. Physics Letters A 2021;413:127610. [DOI: 10.1016/j.physleta.2021.127610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Ahmed AM, Mehaney A, Elsayed HA. Detection of toluene traces in exhaled breath by using a 1D PC as a biomarker for lung cancer diagnosis. Eur Phys J Plus 2021;136. [DOI: 10.1140/epjp/s13360-021-01621-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
16 Dongare PD, Zhao Y, Renard D, Yang J, Neumann O, Metz J, Yuan L, Alabastri A, Nordlander P, Halas NJ. A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients. ACS Nano 2021;15:8761-9. [PMID: 33900744 DOI: 10.1021/acsnano.1c01046] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
17 Cinali MB, Coşkun ÖD. Optimization of physical properties of sputtered silver films by change of deposition power for low emissivity applications. Journal of Alloys and Compounds 2021;853:157073. [DOI: 10.1016/j.jallcom.2020.157073] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
18 Mehaney A, Abadla MM, Elsayed HA. 1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors. Journal of Molecular Liquids 2021;322:114978. [DOI: 10.1016/j.molliq.2020.114978] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
19 Cunha J, Guo T, Della Valle G, Koya AN, Proietti Zaccaria R, Alabastri A. Controlling Light, Heat, and Vibrations in Plasmonics and Phononics. Adv Optical Mater 2020;8:2001225. [DOI: 10.1002/adom.202001225] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
20 Misra AP, Shahmansouri M, Khoddam N. Optical surface plasmons at a metal-crystal interface with the Drude-Lorentz model for material permittivity. Phys Scr 2021;96:015601. [DOI: 10.1088/1402-4896/abc44d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Tabhane GH, Giripunje SM. Robust flower-like ZnO assembled β-PVDF/BT hybrid nanocomposite: Excellent energy harvester. Polymer Testing 2020;88:106564. [DOI: 10.1016/j.polymertesting.2020.106564] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
22 Cunha J, Guo T, Koya AN, Toma A, Prato M, Della Valle G, Alabastri A, Proietti Zaccaria R. Photoinduced Temperature Gradients in Sub‐Wavelength Plasmonic Structures: The Thermoplasmonics of Nanocones. Adv Optical Mater 2020;8:2000568. [DOI: 10.1002/adom.202000568] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
23 Jiang W, Hu H, Deng Q, Zhang S, Xu H. Temperature-dependent dark-field scattering of single plasmonic nanocavity. Nanophotonics 2020;9:3347-56. [DOI: 10.1515/nanoph-2020-0076] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Hoshina M, Yokoshi N, Ishihara H. Nanoscale rotational optical manipulation. Opt Express 2020;28:14980-94. [PMID: 32403530 DOI: 10.1364/OE.393379] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
25 Liu K, Wuenschell J, Bera S, Tang R, Ohodnicki PR, Du H. Nanostructured sapphire optical fiber embedded with Au nanorods for high-temperature plasmonics in harsh environments. Opt Express 2019;27:38125-33. [PMID: 31878584 DOI: 10.1364/OE.27.038125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
26 Nayak BK, Prabhu SS, Achanta VG. Hot carrier dynamics in a dispersionless plasmonic system. Journal of Applied Physics 2019;126:213105. [DOI: 10.1063/1.5119943] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
27 Ahangar SB, Konduru V, Allen JS, Miljkovic N, Lee SH, Choi CK. Development of automated angle-scanning, high-speed surface plasmon resonance imaging and SPRi visualization for the study of dropwise condensation. Exp Fluids 2020;61. [DOI: 10.1007/s00348-019-2844-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
28 Ferrera M, Magnozzi M, Bisio F, Canepa M. Temperature-dependent permittivity of silver and implications for thermoplasmonics. Phys Rev Materials 2019;3. [DOI: 10.1103/physrevmaterials.3.105201] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
29 Jeon HB, Tsalu PV, Ha JW. Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices. Sci Rep 2019;9:13635. [PMID: 31541135 DOI: 10.1038/s41598-019-50032-3] [Cited by in Crossref: 35] [Cited by in F6Publishing: 48] [Article Influence: 11.7] [Reference Citation Analysis]
30 Morshed M, Li Z, Olbricht BC, Fu L, Haque A, Li L, Rifat AA, Rahmani M, Miroshnichenko AE, Hattori HT. High Fluence Chromium and Tungsten Bowtie Nano-antennas. Sci Rep 2019;9:13023. [PMID: 31506576 DOI: 10.1038/s41598-019-49517-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
31 Pratama FR, Ukhtary MS, Saito R. Non-vertical optical transition in near-field enhanced spectroscopy of graphene. J Phys Condens Matter 2019;31:265701. [PMID: 30909176 DOI: 10.1088/1361-648X/ab1335] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
32 Roberts AT, Yang J, Reish ME, Alabastri A, Halas NJ, Nordlander P, Everitt HO. Plasmonic nanoparticle-based epoxy photocuring: A deeper look. Materials Today 2019;27:14-20. [DOI: 10.1016/j.mattod.2018.09.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
33 Silva-oelker G, Jerez-hanckes C, Fay P. High-temperature tungsten-hafnia optimized selective thermal emitters for thermophotovoltaic applications. Journal of Quantitative Spectroscopy and Radiative Transfer 2019;231:61-8. [DOI: 10.1016/j.jqsrt.2019.04.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
34 Mármol I, Quero J, Rodríguez-Yoldi MJ, Cerrada E. Gold as a Possible Alternative to Platinum-Based Chemotherapy for Colon Cancer Treatment. Cancers (Basel) 2019;11:E780. [PMID: 31195711 DOI: 10.3390/cancers11060780] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
35 Ahmed AM, Mehaney A. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci Rep 2019;9:6973. [PMID: 31061422 DOI: 10.1038/s41598-019-43440-y] [Cited by in Crossref: 61] [Cited by in F6Publishing: 76] [Article Influence: 20.3] [Reference Citation Analysis]
36 Lee SY, Tsalu PV, Kim GW, Seo MJ, Hong JW, Ha JW. Tuning Chemical Interface Damping: Interfacial Electronic Effects of Adsorbate Molecules and Sharp Tips of Single Gold Bipyramids. Nano Lett 2019;19:2568-74. [PMID: 30856334 DOI: 10.1021/acs.nanolett.9b00338] [Cited by in Crossref: 39] [Cited by in F6Publishing: 49] [Article Influence: 13.0] [Reference Citation Analysis]
37 Skidanenko AV, Avakyan LA, Kozinkina EA, Bugaev LA. An Effect of Internal Structure of Bimetallic Nanoparticles on Optical Properties for AuAg/Glass Material. Phys Solid State 2018;60:2571-8. [DOI: 10.1134/s1063783419010256] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
38 Ortega A, Rosales J, Cruz-duarte J, Guía M. Fractional model of the dielectric dispersion. Optik 2019;180:754-9. [DOI: 10.1016/j.ijleo.2018.11.087] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
39 Wu B, Zhao M, Zhou J, Xu X, Wang C. Numerical investigation of nonlinear photothermal effect in Vanadium Dioxide phase-change particles. Optics Communications 2018;427:184-9. [DOI: 10.1016/j.optcom.2018.06.049] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
40 Asgari N, Hamidi S. Fantastic exciton-plasmon coupling in dye-doped poly (vinyl pyrrolidone) /gold one-dimensional nano-grating. Superlattices and Microstructures 2018;123:358-73. [DOI: 10.1016/j.spmi.2018.09.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
41 Thakore V, Tang J, Conley K, Ala‐nissila T, Karttunen M. Thermoplasmonic Response of Semiconductor Nanoparticles: A Comparison with Metals. Adv Theory Simul 2019;2:1800100. [DOI: 10.1002/adts.201800100] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
42 Silva-oelker G, Jerez-hanckes C, Fay P. Study of W/HfO 2 grating selective thermal emitters for thermophotovoltaic applications. Opt Express 2018;26:A929. [DOI: 10.1364/oe.26.00a929] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
43 Sepehri Javan N, Naderali R, Azad MH, Najafi MN. Semi-Analytical Solution for Solitary Waves in a Dissipative Suspension of Metallic Nanoparticles. Plasmonics 2019;14:579-93. [DOI: 10.1007/s11468-018-0837-9] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
44 Catone D, Ciavardini A, Di Mario L, Paladini A, Toschi F, Cartoni A, Fratoddi I, Venditti I, Alabastri A, Proietti Zaccaria R, O'Keeffe P. Plasmon Controlled Shaping of Metal Nanoparticle Aggregates by Femtosecond Laser-Induced Melting. J Phys Chem Lett 2018;9:5002-8. [PMID: 30107131 DOI: 10.1021/acs.jpclett.8b02117] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
45 Tsalu PV, Kim GW, Hong JW, Ha JW. Homogeneous localized surface plasmon resonance inflection points for enhanced sensitivity and tracking plasmon damping in single gold bipyramids. Nanoscale 2018;10:12554-63. [PMID: 29932189 DOI: 10.1039/c8nr03311k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
46 Mancini A, Giliberti V, Alabastri A, Calandrini E, De Angelis F, Garoli D, Ortolani M. Thermoplasmonic Effect of Surface-Enhanced Infrared Absorption in Vertical Nanoantenna Arrays. J Phys Chem C 2018;122:13072-81. [DOI: 10.1021/acs.jpcc.8b03808] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
47 Ud Din R, Badshah F, Ahmad I, Ge G. Tunable surface plasmon polaritons at the surfaces of nanocomposite media. EPL 2018;122:17001. [DOI: 10.1209/0295-5075/122/17001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
48 Ortega A, Rosales J, Martínez L, Carreño C. Fractional optical properties of Drude model. Optik 2018;161:244-9. [DOI: 10.1016/j.ijleo.2018.01.060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
49 Aljabali AAA, Akkam Y, Al Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo Alrob O, Alkilany AM, Benamara M, Evans DJ. Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity. Nanomaterials (Basel) 2018;8:E174. [PMID: 29562669 DOI: 10.3390/nano8030174] [Cited by in Crossref: 120] [Cited by in F6Publishing: 116] [Article Influence: 30.0] [Reference Citation Analysis]
50 Wang H, Wang H, Chen Q, Xu H, Sun H, Huang F, Raja W, Toma A, Proietti Zaccaria R. Hybrid-State Dynamics of Dye Molecules and Surface Plasmon Polaritons under Ultrastrong Coupling Regime. Laser & Photonics Reviews 2018;12:1700176. [DOI: 10.1002/lpor.201700176] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
51 Avakyan LA, Heinz M, Skidanenko AV, Yablunovski KA, Ihlemann J, Meinertz J, Patzig C, Dubiel M, Bugaev LA. Insight on agglomerates of gold nanoparticles in glass based on surface plasmon resonance spectrum: study by multi-spheres T-matrix method. J Phys Condens Matter 2018;30:045901. [PMID: 29214983 DOI: 10.1088/1361-648X/aa9fcc] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
52 [DOI: 10.1063/1.5047758] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
53 Patsalas P, Kalfagiannis N, Kassavetis S, Abadias G, Bellas D, Lekka C, Lidorikis E. Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Materials Science and Engineering: R: Reports 2018;123:1-55. [DOI: 10.1016/j.mser.2017.11.001] [Cited by in Crossref: 109] [Cited by in F6Publishing: 104] [Article Influence: 27.3] [Reference Citation Analysis]
54 Hoshina M, Yokoshi N, Okamoto H, Ishihara H. Super-Resolution Trapping: A Nanoparticle Manipulation Using Nonlinear Optical Response. ACS Photonics 2018;5:318-23. [DOI: 10.1021/acsphotonics.7b01078] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
55 Synowicki R, Herzinger CM, Hall JT, Malingowski A. Optical constants of electroplated gold from spectroscopic ellipsometry. Applied Surface Science 2017;421:824-30. [DOI: 10.1016/j.apsusc.2017.03.126] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
56 Minissale M, Pardanaud C, Bisson R, Gallais L. The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study. J Phys D: Appl Phys 2017;50:455601. [DOI: 10.1088/1361-6463/aa81f3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
57 Reyna AS, de Araújo CB. High-order optical nonlinearities in plasmonic nanocomposites—a review. Adv Opt Photon 2017;9:720. [DOI: 10.1364/aop.9.000720] [Cited by in Crossref: 51] [Cited by in F6Publishing: 40] [Article Influence: 10.2] [Reference Citation Analysis]
58 Bellas DV, Lidorikis E. Design of high-temperature solar-selective coatings for application in solar collectors. Solar Energy Materials and Solar Cells 2017;170:102-13. [DOI: 10.1016/j.solmat.2017.05.056] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
59 Alabastri A, Malerba M, Calandrini E, Manjavacas A, De Angelis F, Toma A, Proietti Zaccaria R. Controlling the Heat Dissipation in Temperature-Matched Plasmonic Nanostructures. Nano Lett 2017;17:5472-80. [PMID: 28759244 DOI: 10.1021/acs.nanolett.7b02131] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
60 Evans CI, Zolotavin P, Alabastri A, Yang J, Nordlander P, Natelson D. Quantifying Remote Heating from Propagating Surface Plasmon Polaritons. Nano Lett 2017;17:5646-52. [DOI: 10.1021/acs.nanolett.7b02524] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
61 Giugni A, Torre B, Allione M, Das G, Wang Z, He X, Alshareef HN, Di Fabrizio E. Experimental Route to Scanning Probe Hot-Electron Nanoscopy (HENs) Applied to 2D Material. Advanced Optical Materials 2017;5:1700195. [DOI: 10.1002/adom.201700195] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
62 Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Surface plasmon resonance in gold nanoparticles: a review. J Phys : Condens Matter 2017;29:203002. [DOI: 10.1088/1361-648x/aa60f3] [Cited by in Crossref: 522] [Cited by in F6Publishing: 608] [Article Influence: 104.4] [Reference Citation Analysis]
63 Demers SME, Hsieh LJH, Shirazinejad CR, Garcia JLA, Matthews JR, Hafner JH. Ultraviolet Analysis of Gold Nanorod and Nanosphere Solutions. J Phys Chem C 2017;121:5201-7. [DOI: 10.1021/acs.jpcc.6b09066] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
64 Hasan D, Pitchappa P, Wang J, Wang T, Yang B, Ho CP, Lee C. Novel CMOS-Compatible Mo–AlN–Mo Platform for Metamaterial-Based Mid-IR Absorber. ACS Photonics 2017;4:302-15. [DOI: 10.1021/acsphotonics.6b00672] [Cited by in Crossref: 39] [Cited by in F6Publishing: 25] [Article Influence: 7.8] [Reference Citation Analysis]
65 Gerasimov VS, Ershov AE, Karpov SV, Gavrilyuk AP, Zakomirnyi VI, Rasskazov IL, Ågren H, Polyutov SP. Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited]. Opt Mater Express 2017;7:555. [DOI: 10.1364/ome.7.000555] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
66 Sivan Y, Chu S. Nonlinear plasmonics at high temperatures. Nanophotonics 2017;6:317-28. [DOI: 10.1515/nanoph-2016-0113] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
67 Sepehri Javan N, Amjadi N, Mohammadzadeh H. Dielectric coats effect on the third harmonic generation by a metallic nanoparticle lattice exposed to intense laser radiation. Physics of Plasmas 2016;23:123114. [DOI: 10.1063/1.4972139] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Gerasimov VS, Ershov AE, Gavrilyuk AP, Karpov SV, Ågren H, Polyutov SP. Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state. Opt Express 2016;24:26851-6. [PMID: 27857413 DOI: 10.1364/OE.24.026851] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
69 Wang H, Wang H, Toma A, Yano T, Chen Q, Xu H, Sun H, Proietti Zaccaria R. Dynamics of Strong Coupling between CdSe Quantum Dots and Surface Plasmon Polaritons in Subwavelength Hole Array. J Phys Chem Lett 2016;7:4648-54. [DOI: 10.1021/acs.jpclett.6b02059] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
70 Salmanogli A, Nasseri B, Kohneh shahri MY, Piskin E. Plasmon – plasmon interaction effect on effective medium electrical conductivity (an effective agent for photothermal therapy). Current Applied Physics 2016;16:1498-505. [DOI: 10.1016/j.cap.2016.08.021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
71 Maurya MR, Toutam V. Size-Independent Parameter for Temperature-Dependent Surface Plasmon Resonance in Metal Nanoparticles. J Phys Chem C 2016;120:19316-21. [DOI: 10.1021/acs.jpcc.6b05847] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
72 Zolotavin P, Alabastri A, Nordlander P, Natelson D. Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance. ACS Nano 2016;10:6972-9. [PMID: 27355238 DOI: 10.1021/acsnano.6b02911] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
73 Talebi Moghaddam S, Ertürk H, Mengüç MP. Enhancing local absorption within a gold nano-sphere on a dielectric surface under an AFM probe. Journal of Quantitative Spectroscopy and Radiative Transfer 2016;178:124-33. [DOI: 10.1016/j.jqsrt.2016.02.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
74 Messina GC, Sinatra MG, Bonanni V, Brescia R, Alabastri A, Pineider F, Campo G, Sangregorio C, Li-destri G, Sfuncia G, Marletta G, Condorelli M, Proietti Zaccaria R, De Angelis F, Compagnini G. Tuning the Composition of Alloy Nanoparticles Through Laser Mixing: The Role of Surface Plasmon Resonance. J Phys Chem C 2016;120:12810-8. [DOI: 10.1021/acs.jpcc.6b01465] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
75 Wang H, Toma A, Wang H, Bozzola A, Miele E, Haddadpour A, Veronis G, De Angelis F, Wang L, Chen Q, Xu H, Sun H, Zaccaria RP. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays. Nanoscale 2016;8:13445-53. [DOI: 10.1039/c6nr01588c] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 4.2] [Reference Citation Analysis]
76 Coluccio ML, Gentile F, Das G, Nicastri A, Perri AM, Candeloro P, Perozziello G, Proietti Zaccaria R, Gongora JS, Alrasheed S, Fratalocchi A, Limongi T, Cuda G, Di Fabrizio E. Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain. Sci Adv 2015;1:e1500487. [PMID: 26601267 DOI: 10.1126/sciadv.1500487] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 6.6] [Reference Citation Analysis]
77 Sepehri Javan N. Self-focusing of an intense laser pulse interacting with a periodic lattice of metallic nanoparticle. Physics of Plasmas 2015;22:093116. [DOI: 10.1063/1.4931172] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
78 [DOI: 10.1109/metamaterials.2015.7342544] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
79 Sepehri Javan N. Raman parametric excitation effect upon the third harmonic generation by a metallic nanoparticle lattice. Journal of Applied Physics 2015;118:073104. [DOI: 10.1063/1.4928810] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
80 Della Valle G, Polli D, Biagioni P, Martella C, Giordano MC, Finazzi M, Longhi S, Duò L, Cerullo G, Buatier de Mongeot F. Self-organized plasmonic metasurfaces for all-optical modulation. Phys Rev B 2015;91. [DOI: 10.1103/physrevb.91.235440] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
81 Alabastri A, Toma A, Malerba M, De Angelis F, Proietti Zaccaria R. High Temperature Nanoplasmonics: The Key Role of Nonlinear Effects. ACS Photonics 2015;2:115-20. [DOI: 10.1021/ph500326c] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
82 Farah P, Demetriadou A, Salvatore S, Vignolini S, Stefik M, Wiesner U, Hess O, Steiner U, Valev VK, Baumberg JJ. Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials. Phys Rev Applied 2014;2. [DOI: 10.1103/physrevapplied.2.044002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
83 Gopalakrishnan A, Chirumamilla M, De Angelis F, Toma A, Zaccaria RP, Krahne R. Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules. ACS Nano 2014;8:7986-94. [PMID: 25084515 DOI: 10.1021/nn5020038] [Cited by in Crossref: 83] [Cited by in F6Publishing: 73] [Article Influence: 10.4] [Reference Citation Analysis]