BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wolff SA, Coelho LH, Karoliussen I, Jost AI. Effects of the Extraterrestrial Environment on Plants: Recommendations for Future Space Experiments for the MELiSSA Higher Plant Compartment. Life (Basel) 2014;4:189-204. [PMID: 25370192 DOI: 10.3390/life4020189] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Carillo P, Morrone B, Fusco GM, De Pascale S, Rouphael Y. Challenges for a Sustainable Food Production System on Board of the International Space Station: A Technical Review. Agronomy 2020;10:687. [DOI: 10.3390/agronomy10050687] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 6.5] [Reference Citation Analysis]
2 Qiu D, Jian Y, Zhang Y, Xie G. Plant Gravitropism and Signal Conversion under a Stress Environment of Altered Gravity. Int J Mol Sci 2021;22:11723. [PMID: 34769154 DOI: 10.3390/ijms222111723] [Reference Citation Analysis]
3 El-Nakhel C, Giordano M, Pannico A, Carillo P, Fusco GM, De Pascale S, Rouphael Y. Cultivar-Specific Performance and Qualitative Descriptors for Butterhead Salanova Lettuce Produced in Closed Soilless Cultivation as a Candidate Salad Crop for Human Life Support in Space. Life (Basel) 2019;9:E61. [PMID: 31337144 DOI: 10.3390/life9030061] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
4 Stankovic B. Plants in Space. In: Russomano T, Rehnberg L, editors. Into Space - A Journey of How Humans Adapt and Live in Microgravity. InTech; 2018. [DOI: 10.5772/intechopen.74230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
5 Clauwaert P, Muys M, Alloul A, De Paepe J, Luther A, Sun X, Ilgrande C, Christiaens ME, Hu X, Zhang D, Lindeboom RE, Sas B, Rabaey K, Boon N, Ronsse F, Geelen D, Vlaeminck SE. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. Progress in Aerospace Sciences 2017;91:87-98. [DOI: 10.1016/j.paerosci.2017.04.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 6.4] [Reference Citation Analysis]
6 Haanes H, Hansen EL, Hevrøy TH, Jensen LK, Gjelsvik R, Jaworska A, Bradshaw C. Realism and usefulness of multispecies experiment designs with regard to application in radioecology: A review. Science of The Total Environment 2020;718:134485. [DOI: 10.1016/j.scitotenv.2019.134485] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
7 Araújo Sde S, Paparella S, Dondi D, Bentivoglio A, Carbonera D, Balestrazzi A. Physical Methods for Seed Invigoration: Advantages and Challenges in Seed Technology. Front Plant Sci 2016;7:646. [PMID: 27242847 DOI: 10.3389/fpls.2016.00646] [Cited by in Crossref: 53] [Cited by in F6Publishing: 27] [Article Influence: 8.8] [Reference Citation Analysis]
8 Massa S, Pagliarello R, Cemmi A, Di Sarcina I, Bombarely A, Demurtas OC, Diretto G, Paolini F, Petzold HE, Bliek M, Bennici E, Del Fiore A, De Rossi P, Spelt C, Koes R, Quattrocchio F, Benvenuto E. Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to Ionizing Radiation and Antioxidant Properties in Space. Front Plant Sci 2022;13:830931. [PMID: 35283922 DOI: 10.3389/fpls.2022.830931] [Reference Citation Analysis]
9 Poulet L, Fontaine J, Dussap C. Plant’s response to space environment: a comprehensive review including mechanistic modelling for future space gardeners. Botany Letters 2016;163:337-47. [DOI: 10.1080/23818107.2016.1194228] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
10 Zhang N, Li J, Luo J, Yu Q, Ai W, Zhang L, Tang Y. Wheat Cultivation and Nutrient Control for the 180-day CELSS Integrated Experiment. Life Sci Space Res (Amst) 2020;26:46-54. [PMID: 32718686 DOI: 10.1016/j.lssr.2020.04.001] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Ercan I, Tombuloglu H, Alqahtani N, Alotaibi B, Bamhrez M, Alshumrani R, Ozcelik S, Kayed TS. Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). Plant Physiol Biochem 2021;170:36-48. [PMID: 34844116 DOI: 10.1016/j.plaphy.2021.11.033] [Reference Citation Analysis]
12 Zheng HQ, Han F, Le J. Higher Plants in Space: Microgravity Perception, Response, and Adaptation. Microgravity Sci Technol 2015;27:377-86. [DOI: 10.1007/s12217-015-9428-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 3.1] [Reference Citation Analysis]
13 Peiro E, Pannico A, Colleoni SG, Bucchieri L, Rouphael Y, De Pascale S, Paradiso R, Gòdia F. Air Distribution in a Fully-Closed Higher Plant Growth Chamber Impacts Crop Performance of Hydroponically-Grown Lettuce. Front Plant Sci 2020;11:537. [PMID: 32477383 DOI: 10.3389/fpls.2020.00537] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Jost AI, Hoson T, Iversen TH. The Utilization of Plant Facilities on the International Space Station-The Composition, Growth, and Development of Plant Cell Walls under Microgravity Conditions. Plants (Basel) 2015;4:44-62. [PMID: 27135317 DOI: 10.3390/plants4010044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
15 Bera K, Dutta P, Sadhukhan S. Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms. Plant Cell Rep 2021. [PMID: 34654949 DOI: 10.1007/s00299-021-02798-y] [Reference Citation Analysis]
16 Wolff SA, Palma CF, Marcelis L, Kittang Jost AI, van Delden SH. Testing New Concepts for Crop Cultivation in Space: Effects of Rooting Volume and Nitrogen Availability. Life (Basel) 2018;8:E45. [PMID: 30301223 DOI: 10.3390/life8040045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
17 Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017;35:905-32. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
18 Llorente B, Williams TC, Goold HD. The Multiplanetary Future of Plant Synthetic Biology. Genes (Basel) 2018;9:E348. [PMID: 29996548 DOI: 10.3390/genes9070348] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
19 Marzioli P, Gugliermetti L, Santoni F, Delfini A, Piergentili F, Nardi L, Metelli G, Benvenuto E, Massa S, Bennici E. CultCube: Experiments in autonomous in-orbit cultivation on-board a 12-Units CubeSat platform. Life Sci Space Res (Amst) 2020;25:42-52. [PMID: 32414492 DOI: 10.1016/j.lssr.2020.02.005] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Prasad B, Richter P, Vadakedath N, Mancinelli R, Krüger M, Strauch SM, Grimm D, Darriet P, Chapel JP, Cohen J, Lebert M. Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020;43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
21 Choe M, Choe W, Cha S, Lee I. Changes of cationic transport in AtCAX5 transformant yeast by electromagnetic field environments. J Biol Phys 2018;44:433-48. [PMID: 29882183 DOI: 10.1007/s10867-018-9500-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]