BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Aurand ER, Wagner J, Lanning C, Bjugstad KB. Building biocompatible hydrogels for tissue engineering of the brain and spinal cord. J Funct Biomater 2012;3:839-63. [PMID: 24955749 DOI: 10.3390/jfb3040839] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Kim HN, Choi N. Consideration of the Mechanical Properties of Hydrogels for Brain Tissue Engineering and Brain-on-a-chip. BioChip J 2019;13:8-19. [DOI: 10.1007/s13206-018-3101-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 6.7] [Reference Citation Analysis]
2 Shultz RB, Zhong Y. Hydrogel-based local drug delivery strategies for spinal cord repair. Neural Regen Res 2021;16:247-53. [PMID: 32859771 DOI: 10.4103/1673-5374.290882] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
3 Ziemba AM, Gilbert RJ. Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord. Front Pharmacol 2017;8:245. [PMID: 28539887 DOI: 10.3389/fphar.2017.00245] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 9.2] [Reference Citation Analysis]
4 Lozano R, Stevens L, Thompson BC, Gilmore KJ, Gorkin R, Stewart EM, in het Panhuis M, Romero-ortega M, Wallace GG. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 2015;67:264-73. [DOI: 10.1016/j.biomaterials.2015.07.022] [Cited by in Crossref: 238] [Cited by in F6Publishing: 215] [Article Influence: 34.0] [Reference Citation Analysis]
5 Thomas RC, Vu P, Modi SP, Chung PE, Landis RC, Khaing ZZ, Hardy JG, Schmidt CE. Sacrificial Crystal Templated Hyaluronic Acid Hydrogels As Biomimetic 3D Tissue Scaffolds for Nerve Tissue Regeneration. ACS Biomater Sci Eng 2017;3:1451-9. [DOI: 10.1021/acsbiomaterials.7b00002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 4.2] [Reference Citation Analysis]
6 Massensini AR, Ghuman H, Saldin LT, Medberry CJ, Keane TJ, Nicholls FJ, Velankar SS, Badylak SF, Modo M. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomater 2015;27:116-30. [PMID: 26318805 DOI: 10.1016/j.actbio.2015.08.040] [Cited by in Crossref: 83] [Cited by in F6Publishing: 77] [Article Influence: 11.9] [Reference Citation Analysis]
7 George J, Hsu CC, Nguyen LTB, Ye H, Cui Z. Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol Adv 2020;42:107370. [PMID: 30902729 DOI: 10.1016/j.biotechadv.2019.03.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
8 Ghuman H, Mauney C, Donnelly J, Massensini AR, Badylak SF, Modo M. Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke. Acta Biomater 2018;80:66-84. [PMID: 30232030 DOI: 10.1016/j.actbio.2018.09.020] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 9.5] [Reference Citation Analysis]
9 Murphy AR, Ghobrial I, Jamshidi P, Laslett A, O'brien CM, Cameron NR. Tailored emulsion-templated porous polymer scaffolds for iPSC-derived human neural precursor cell culture. Polym Chem 2017;8:6617-27. [DOI: 10.1039/c7py01375b] [Cited by in Crossref: 18] [Article Influence: 3.6] [Reference Citation Analysis]
10 Delplace V, Pickering AJ, Hettiaratchi MH, Zhao S, Kivijärvi T, Shoichet MS. Inverse Electron-Demand Diels–Alder Methylcellulose Hydrogels Enable the Co-delivery of Chondroitinase ABC and Neural Progenitor Cells. Biomacromolecules 2020;21:2421-31. [DOI: 10.1021/acs.biomac.0c00357] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
11 Poláková L, Raus V, Kostka L, Braunová A, Pilař J, Lobaz V, Pánek J, Sedláková Z. Antioxidant Properties of 2-Hydroxyethyl Methacrylate-Based Copolymers with Incorporated Sterically Hindered Amine. Biomacromolecules 2015;16:2726-34. [PMID: 26258477 DOI: 10.1021/acs.biomac.5b00599] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
12 Kornev VA, Grebenik EA, Solovieva AB, Dmitriev RI, Timashev PS. Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Comput Struct Biotechnol J 2018;16:488-502. [PMID: 30455858 DOI: 10.1016/j.csbj.2018.10.011] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
13 Castagnola E, Ansaldo A, Maggiolini E, Ius T, Skrap M, Ricci D, Fadiga L. Smaller, softer, lower-impedance electrodes for human neuroprosthesis: a pragmatic approach. Front Neuroeng 2014;7:8. [PMID: 24795621 DOI: 10.3389/fneng.2014.00008] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 5.6] [Reference Citation Analysis]
14 Baranes K, Shevach M, Shefi O, Dvir T. Gold Nanoparticle-Decorated Scaffolds Promote Neuronal Differentiation and Maturation. Nano Lett 2016;16:2916-20. [PMID: 26674672 DOI: 10.1021/acs.nanolett.5b04033] [Cited by in Crossref: 122] [Cited by in F6Publishing: 104] [Article Influence: 17.4] [Reference Citation Analysis]
15 Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020;120:10547-607. [PMID: 32407108 DOI: 10.1021/acs.chemrev.9b00789] [Cited by in Crossref: 49] [Cited by in F6Publishing: 38] [Article Influence: 24.5] [Reference Citation Analysis]
16 Arulmoli J, Wright HJ, Phan DTT, Sheth U, Que RA, Botten GA, Keating M, Botvinick EL, Pathak MM, Zarembinski TI, Yanni DS, Razorenova OV, Hughes CCW, Flanagan LA. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater 2016;43:122-38. [PMID: 27475528 DOI: 10.1016/j.actbio.2016.07.043] [Cited by in Crossref: 75] [Cited by in F6Publishing: 68] [Article Influence: 12.5] [Reference Citation Analysis]
17 Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A. Genipin-crosslinked gelatin-silk fibroin hydrogels for modulating the behaviour of pluripotent cells: Modulating the behaviour of pluripotent cells. J Tissue Eng Regen Med 2016;10:876-87. [DOI: 10.1002/term.1868] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
18 Aurand ER, Wagner JL, Shandas R, Bjugstad KB. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells. Stem Cell Res 2014;12:11-23. [PMID: 24141109 DOI: 10.1016/j.scr.2013.09.013] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
19 Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021;182:1091-111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Reference Citation Analysis]
20 Prager J, Adams CF, Delaney AM, Chanoit G, Tarlton JF, Wong LF, Chari DM, Granger N. Stiffness-matched biomaterial implants for cell delivery: clinical, intraoperative ultrasound elastography provides a 'target' stiffness for hydrogel synthesis in spinal cord injury. J Tissue Eng 2020;11:2041731420934806. [PMID: 32670538 DOI: 10.1177/2041731420934806] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
21 Hsu CC, George JH, Waller S, Besnard C, Nagel DA, Hill EJ, Coleman MD, Korsunsky AM, Cui Z, Ye H. Increased connectivity of hiPSC-derived neural networks in multiphase granular hydrogel scaffolds. Bioact Mater 2022;9:358-72. [PMID: 34820576 DOI: 10.1016/j.bioactmat.2021.07.008] [Reference Citation Analysis]
22 Gačanin J, Hedrich J, Sieste S, Glaßer G, Lieberwirth I, Schilling C, Fischer S, Barth H, Knöll B, Synatschke CV, Weil T. Autonomous Ultrafast Self-Healing Hydrogels by pH-Responsive Functional Nanofiber Gelators as Cell Matrices. Adv Mater 2019;31:1805044. [DOI: 10.1002/adma.201805044] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
23 Mahumane GD, Kumar P, du Toit LC, Choonara YE, Pillay V. 3D scaffolds for brain tissue regeneration: architectural challenges. Biomater Sci 2018;6:2812-37. [DOI: 10.1039/c8bm00422f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 10] [Article Influence: 7.8] [Reference Citation Analysis]
24 Garrudo FFF, Nogueira DES, Rodrigues CAV, Ferreira FA, Paradiso P, Colaço R, Marques AC, Cabral JMS, Morgado J, Linhardt RJ, Ferreira FC. Electrical stimulation of neural-differentiating iPSCs on novel coaxial electroconductive nanofibers. Biomater Sci 2021;9:5359-82. [PMID: 34223566 DOI: 10.1039/d1bm00503k] [Reference Citation Analysis]
25 Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? Adv NanoBio Res 2021;1:2000066. [DOI: 10.1002/anbr.202000066] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Usmani S, Aurand ER, Medelin M, Fabbro A, Scaini D, Laishram J, Rosselli FB, Ansuini A, Zoccolan D, Scarselli M, De Crescenzi M, Bosi S, Prato M, Ballerini L. 3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants. Sci Adv 2016;2:e1600087. [PMID: 27453939 DOI: 10.1126/sciadv.1600087] [Cited by in Crossref: 58] [Cited by in F6Publishing: 48] [Article Influence: 9.7] [Reference Citation Analysis]
27 Lee SY, George JH, Nagel DA, Ye H, Kueberuwa G, Seymour LW. Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters. J Tissue Eng Regen Med 2019;13:369-84. [PMID: 30550638 DOI: 10.1002/term.2786] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
28 Simsa R, Rothenbücher T, Gürbüz H, Ghosheh N, Emneus J, Jenndahl L, Kaplan DL, Bergh N, Serrano AM, Fogelstrand P. Brain organoid formation on decellularized porcine brain ECM hydrogels. PLoS One 2021;16:e0245685. [PMID: 33507989 DOI: 10.1371/journal.pone.0245685] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Ghuman H, Massensini AR, Donnelly J, Kim SM, Medberry CJ, Badylak SF, Modo M. ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate. Biomaterials 2016;91:166-81. [PMID: 27031811 DOI: 10.1016/j.biomaterials.2016.03.014] [Cited by in Crossref: 77] [Cited by in F6Publishing: 69] [Article Influence: 12.8] [Reference Citation Analysis]
30 Adams CF, Delaney AM, Carwardine DR, Tickle J, Granger N, Chari DM. Nanoparticle-Based Imaging of Clinical Transplant Populations Encapsulated in Protective Polymer Matrices. Macromol Biosci 2019;19:e1800389. [PMID: 30511815 DOI: 10.1002/mabi.201800389] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
31 Prévôt ME, Andro H, Alexander SLM, Ustunel S, Zhu C, Nikolov Z, Rafferty ST, Brannum MT, Kinsel B, Korley LTJ, Freeman EJ, Mcdonough JA, Clements RJ, Hegmann E. Liquid crystal elastomer foams with elastic properties specifically engineered as biodegradable brain tissue scaffolds. Soft Matter 2018;14:354-60. [DOI: 10.1039/c7sm01949a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
32 Esposito CL, Kirilov P, Roullin VG. Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications. Journal of Controlled Release 2018;271:1-20. [DOI: 10.1016/j.jconrel.2017.12.019] [Cited by in Crossref: 78] [Cited by in F6Publishing: 50] [Article Influence: 19.5] [Reference Citation Analysis]
33 Lozano R, Stevens L, Thompson BC, Gilmore KJ, Gorkin R, Stewart EM, Panhuis MIH, Romero-ortega M, Wallace GG. Brain on a bench top. Materials Today 2016;19:124-5. [DOI: 10.1016/j.mattod.2016.01.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
34 Newland B, Newland H, Werner C, Rosser A, Wang W. Prospects for polymer therapeutics in Parkinson's disease and other neurodegenerative disorders. Progress in Polymer Science 2015;44:79-112. [DOI: 10.1016/j.progpolymsci.2014.12.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 2.9] [Reference Citation Analysis]
35 Ghasemzadeh H, Mahboubi A, Karimi K, Hassani S. Full polysaccharide chitosan-CMC membrane and silver nanocomposite: synthesis, characterization, and antibacterial behaviors: Full Polysaccharide Chitosan-CMC Membrane and Silver Nanocomposite. Polym Adv Technol 2016;27:1204-10. [DOI: 10.1002/pat.3785] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
36 González-Nieto D, Fernández-García L, Pérez-Rigueiro J, Guinea GV, Panetsos F. Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality. Polymers (Basel) 2018;10:E184. [PMID: 30966220 DOI: 10.3390/polym10020184] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
37 Murphy AR, Laslett A, O'brien CM, Cameron NR. Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomaterialia 2017;54:1-20. [DOI: 10.1016/j.actbio.2017.02.046] [Cited by in Crossref: 71] [Cited by in F6Publishing: 61] [Article Influence: 14.2] [Reference Citation Analysis]
38 Eigel D, Werner C, Newland B. Cryogel biomaterials for neuroscience applications. Neurochem Int 2021;147:105012. [PMID: 33731275 DOI: 10.1016/j.neuint.2021.105012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
39 Khaing ZZ, Seidlits SK. Hyaluronic acid and neural stem cells: implications for biomaterial design. J Mater Chem B 2015;3:7850-66. [DOI: 10.1039/c5tb00974j] [Cited by in Crossref: 33] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
40 Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide: Neural stem cells encapsulated in silk fibroin hydrogel. J Tissue Eng Regen Med 2017;11:1532-41. [DOI: 10.1002/term.2053] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 8.9] [Reference Citation Analysis]
41 Tang-schomer MD. 3D axon growth by exogenous electrical stimulus and soluble factors. Brain Research 2018;1678:288-96. [DOI: 10.1016/j.brainres.2017.10.032] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
42 Ghuman H, Gerwig M, Nicholls FJ, Liu JR, Donnelly J, Badylak SF, Modo M. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater 2017;63:50-63. [PMID: 28917705 DOI: 10.1016/j.actbio.2017.09.011] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
43 Aurand ER, Usmani S, Medelin M, Scaini D, Bosi S, Rosselli FB, Donato S, Tromba G, Prato M, Ballerini L. Nanostructures to Engineer 3D Neural‐Interfaces: Directing Axonal Navigation toward Successful Bridging of Spinal Segments. Adv Funct Mater 2018;28:1700550. [DOI: 10.1002/adfm.201700550] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
44 Tsui C, Koss K, Churchward MA, Todd KG. Biomaterials and glia: Progress on designs to modulate neuroinflammation. Acta Biomater 2019;83:13-28. [PMID: 30414483 DOI: 10.1016/j.actbio.2018.11.008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
45 Sun W, Motta A, Shi Y, Seekamp A, Schmidt H, Gorb SN, Migliaresi C, Fuchs S. Co-culture of outgrowth endothelial cells with human mesenchymal stem cells in silk fibroin hydrogels promotes angiogenesis. Biomed Mater 2016;11:035009. [PMID: 27271291 DOI: 10.1088/1748-6041/11/3/035009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]