BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci 2021;22:7202. [PMID: 34281254 DOI: 10.3390/ijms22137202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Chen M, Shou Z, Jin X, Chen Y. Emerging strategies in nanotechnology to treat respiratory tract infections: realizing current trends for future clinical perspectives. Drug Deliv 2022;29:2442-58. [PMID: 35892224 DOI: 10.1080/10717544.2022.2089294] [Reference Citation Analysis]
2 Dong Q, Zu D, Kong L, Chen S, Yao J, Lin J, Lu L, Wu B, Fang B. Construction of antibacterial nano-silver embedded bioactive hydrogel to repair infectious skin defects. Biomater Res 2022;26. [DOI: 10.1186/s40824-022-00281-7] [Reference Citation Analysis]
3 Martorana A, Pitarresi G, Palumbo FS, Catania V, Schillaci D, Mauro N, Fiorica C, Giammona G. Fabrication of silver nanoparticles by a diethylene triamine-hyaluronic acid derivative and use as antibacterial coating. Carbohydrate Polymers 2022;295:119861. [DOI: 10.1016/j.carbpol.2022.119861] [Reference Citation Analysis]
4 Huang L, Yu L, Yin X, Lin Y, Xu Y, Niu Y. Silver nanoparticles with vanadium oxide nanowires loaded into electrospun dressings for efficient healing of bacterium-infected wounds. Journal of Colloid and Interface Science 2022;622:117-25. [DOI: 10.1016/j.jcis.2022.04.026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Qian H, Liu W, Chang W, Hao X, Zhang D. D-Cysteine Functionalized Superhydrophobic Nanocomposite Coating with Multiple-Action Antibacterial Property and Enhanced Mechanical Durability. Coatings 2022;12:1158. [DOI: 10.3390/coatings12081158] [Reference Citation Analysis]
6 Hiremath A, Reddy GJ, Basha H, Narayanan NSV, Anwar Bég O. Magnetized supercritical third-grade nanofluid flow from a vertical cylinder using a Crank–Nicolson implicit scheme. Waves in Random and Complex Media. [DOI: 10.1080/17455030.2022.2103207] [Reference Citation Analysis]
7 González-fernández S, Lozano-iturbe V, Menéndez MF, Ordiales H, Fernández-vega I, Merayo J, Vazquez F, Quirós LM, Martín C. A Promising Antifungal and Antiamoebic Effect of Silver Nanorings, a Novel Type of AgNP. Antibiotics 2022;11:1054. [DOI: 10.3390/antibiotics11081054] [Reference Citation Analysis]
8 Yalçın D, Erkaya İA, Erdem B. Antimicrobial, antibiofilm potential, and anti-quorum sensing activity of silver nanoparticles synthesized from Cyanobacteria Oscillatoria princeps. Environ Sci Pollut Res Int 2022. [PMID: 35859236 DOI: 10.1007/s11356-022-22068-y] [Reference Citation Analysis]
9 Feng J, Feng L, Xu S, Zhu C, Pan G, Yao L. Universal Preparation Strategy for Ultradurable Antibacterial Fabrics through Coating an Adhesive Nanosilver Glue. Nanomaterials (Basel) 2022;12:2429. [PMID: 35889656 DOI: 10.3390/nano12142429] [Reference Citation Analysis]
10 El-Deeb NM, Khattab SM, Abu-Youssef MA, Badr AMA. Green synthesis of novel stable biogenic gold nanoparticles for breast cancer therapeutics via the induction of extrinsic and intrinsic pathways. Sci Rep 2022;12:11518. [PMID: 35798780 DOI: 10.1038/s41598-022-15648-y] [Reference Citation Analysis]
11 You S, Zhang X, Wang Y, Jin Y, Wei M, Wang X. Development of highly stable color indicator films based on κ-carrageenan, silver nanoparticle and red grape skin anthocyanin for marine fish freshness assessment. Int J Biol Macromol 2022;216:655-69. [PMID: 35798081 DOI: 10.1016/j.ijbiomac.2022.06.206] [Reference Citation Analysis]
12 Perumal S, Atchudan R, Rühl E, Graf C. Controlled Synthesis of Platinum and Silver Nanoparticles Using Multivalent Ligands. Nanomaterials 2022;12:2294. [DOI: 10.3390/nano12132294] [Reference Citation Analysis]
13 Yakar A, Dede N. Production and Characterization of Healing Polymeric Films for Diabetes Patients’ Wounds. Front Mater 2022;9:910761. [DOI: 10.3389/fmats.2022.910761] [Reference Citation Analysis]
14 Musimun C, Papiernik D, Permpoonpattana P, Chumkaew P, Srisawat T. Synergy of green-synthesized silver nanoparticles and Vatica diospyroides fruit extract in inhibiting Gram-positive bacteria by inducing membrane and intracellular disruption. Journal of Experimental Nanoscience 2022;17:420-38. [DOI: 10.1080/17458080.2022.2084533] [Reference Citation Analysis]
15 Long Y, Hu S, Lei P, Li Y. Preparation of green silver nanoparticles with high antibacterial ability using N-maleoyl chitosan and montmorillonite. Materials Letters 2022;316:132044. [DOI: 10.1016/j.matlet.2022.132044] [Reference Citation Analysis]
16 Tarar A, Peng C. Enhancement of antibacterial activity of sinigrin-capped silver nanoparticles in combination with myrosinase. Journal of Environmental Chemical Engineering 2022;10:107796. [DOI: 10.1016/j.jece.2022.107796] [Reference Citation Analysis]
17 Suvandee W, Teeranachaideekul V, Jeenduang N, Nooeaid P, Makarasen A, Chuenchom L, Techasakul S, Dechtrirat D. One-Pot and Green Preparation of Phyllanthus emblica Extract/Silver Nanoparticles/Polyvinylpyrrolidone Spray-On Dressing. Polymers (Basel) 2022;14:2205. [PMID: 35683878 DOI: 10.3390/polym14112205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Smirnov O, Kalynovskyi V, Yumyna Y, Zelena P, Levenets T, Kovalenko M, Dzhagan V, Skoryk M. Potency of phytosynthesized silver nanoparticles from Lathraea squamaria as anticandidal agent and wheat seeds germination enhancer. Biologia. [DOI: 10.1007/s11756-022-01117-4] [Reference Citation Analysis]
19 Zein R, Alghoraibi I, Soukkarieh C, Ismail MT, Alahmad A. Influence of Polyvinylpyrrolidone Concentration on Properties and Anti-Bacterial Activity of Green Synthesized Silver Nanoparticles. Micromachines 2022;13:777. [DOI: 10.3390/mi13050777] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kara F, Aksoy EA, Aksoy S, Hasirci N. Coating of silver nanoparticles on polyurethane film surface by green chemistry approach and investigation of antibacterial activity against S. epidermidis. Journal of Bioactive and Compatible Polymers. [DOI: 10.1177/08839115221098056] [Reference Citation Analysis]
21 Bonetti L, Fiorati A, D’agostino A, Pelacani CM, Chiesa R, Farè S, De Nardo L. Smart Methylcellulose Hydrogels for pH-Triggered Delivery of Silver Nanoparticles. Gels 2022;8:298. [DOI: 10.3390/gels8050298] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Soliman AM, Elshorbagy W, Maraqa MA, Al-issai LM, El Sheikh ES, Elhaty IA, Ayesh AI, Pál T. In-situ, facile and green preparation of nanoscale silver supported on activated carbon: Disinfection properties and removal of inorganic DBPs from drinking water. Environmental Nanotechnology, Monitoring & Management 2022;17:100621. [DOI: 10.1016/j.enmm.2021.100621] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Lange A, Sawosz E, Wierzbicki M, Kutwin M, Daniluk K, Strojny B, Ostrowska A, Wójcik B, Łojkowski M, Gołębiewski M, Chwalibog A, Jaworski S. Nanocomposites of Graphene Oxide-Silver Nanoparticles for Enhanced Antibacterial Activity: Mechanism of Action and Medical Textiles Coating. Materials (Basel) 2022;15:3122. [PMID: 35591457 DOI: 10.3390/ma15093122] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Wali N, Shabbir A, Wajid N, Abbas N, Naqvi SZH. Synergistic efficacy of colistin and silver nanoparticles impregnated human amniotic membrane in a burn wound infected rat model. Sci Rep 2022;12:6414. [PMID: 35440743 DOI: 10.1038/s41598-022-10314-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Kozhunova EY, Komarova GA, Vyshivannaya OV, Nasimova IR, Kuvarina AE, Sadykova VS. Antiseptic Materials on the Base of Polymer Interpenetrating Networks Microgels and Benzalkonium Chloride. Int J Mol Sci 2022;23:4394. [PMID: 35457209 DOI: 10.3390/ijms23084394] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Tripathi N, Goshisht MK. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS Appl Bio Mater 2022. [PMID: 35358388 DOI: 10.1021/acsabm.2c00014] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022;:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Hochvaldová L, Večeřová R, Kolář M, Prucek R, Kvítek L, Lapčík L, Panáček A. Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis. Nanotechnology Reviews 2021;11:1115-42. [DOI: 10.1515/ntrev-2022-0059] [Reference Citation Analysis]
29 Zhang C, Yang M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics 2022;11:349. [DOI: 10.3390/antibiotics11030349] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Yang TL, Hsieh CM, Meng LJ, Tsai T, Chen CT. Oleic Acid-Based Self Micro-Emulsifying Delivery System for Enhancing Antifungal Activities of Clotrimazole. Pharmaceutics 2022;14:478. [PMID: 35335854 DOI: 10.3390/pharmaceutics14030478] [Reference Citation Analysis]
31 Liu C, Zhu Y, Lun X, Sheng H, Yan A. Effects of wound dressing based on the combination of silver@curcumin nanoparticles and electrospun chitosan nanofibers on wound healing. Bioengineered 2022;13:4328-39. [PMID: 35137655 DOI: 10.1080/21655979.2022.2031415] [Reference Citation Analysis]
32 Sajid M. Nanomaterials: types, properties, recent advances, and toxicity concerns. Current Opinion in Environmental Science & Health 2022;25:100319. [DOI: 10.1016/j.coesh.2021.100319] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
33 de Carvalho Lima EN, Octaviano ALM, Piqueira JRC, Diaz RS, Justo JF. Coronavirus and Carbon Nanotubes: Seeking Immunological Relationships to Discover Immunotherapeutic Possibilities. IJN 2022;Volume 17:751-81. [DOI: 10.2147/ijn.s341890] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Ameen F. Optimization of the Synthesis of Fungus-Mediated Bi-Metallic Ag-Cu Nanoparticles. Applied Sciences 2022;12:1384. [DOI: 10.3390/app12031384] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
35 Wang Y, Wei S. Green Fabrication of Bioactive Silver Nanoparticles Using Mentha pulegium Extract under Alkaline: An Enhanced Anticancer Activity. ACS Omega 2022;7:1494-504. [PMID: 35036812 DOI: 10.1021/acsomega.1c06267] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Yari T, Vaghari H, Adibpour M, Jafarizadeh-malmiri H, Berenjian A. Potential application of Aspergillus terreus, as a biofactory, in extracellular fabrication of silver nanoparticles. Fuel 2022;308:122007. [DOI: 10.1016/j.fuel.2021.122007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Calabrese C, La Parola V, Testa ML, Liotta LF. Antifouling and antimicrobial activity of Ag, Cu and Fe nanoparticles supported on silica and titania. Inorganica Chimica Acta 2022;529:120636. [DOI: 10.1016/j.ica.2021.120636] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
38 Amibo TA, Beyan SM, Mustefa M, Sundramurthy VP, Bayu AB. Development of Nanocomposite based Antimicrobial Cotton Fabrics Impregnated by Nano SiO 2 Loaded AgNPs Derived from Eragrostis Teff straw. Materials Research Innovations. [DOI: 10.1080/14328917.2021.2022372] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
39 Dulińska-Litewka J, Dykas K, Felkle D, Karnas K, Khachatryan G, Karewicz A. Hyaluronic Acid-Silver Nanocomposites and Their Biomedical Applications: A Review. Materials (Basel) 2021;15:234. [PMID: 35009380 DOI: 10.3390/ma15010234] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Crisan MC, Teodora M, Lucian M. Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications. Applied Sciences 2022;12:141. [DOI: 10.3390/app12010141] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
41 Munir T, Mahmood A, Shafiq F, Fakhar-E-Alam M, Atif M, Raza A, Ahmad S, Saleem Alimgeer K, Abbas N. Experimental and theoretical analyses of nano-silver for antibacterial activity based on differential crystal growth temperatures. Saudi J Biol Sci 2021;28:7561-6. [PMID: 34867060 DOI: 10.1016/j.sjbs.2021.09.058] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Renganathan S, Subramaniyan S, Karunanithi N, Vasanthakumar P, Kutzner A, Kim PS, Heese K. Antibacterial, Antifungal, and Antioxidant Activities of Silver Nanoparticles Biosynthesized from Bauhinia tomentosa Linn. Antioxidants (Basel) 2021;10:1959. [PMID: 34943062 DOI: 10.3390/antiox10121959] [Reference Citation Analysis]
43 Rudi L, Zinicovscaia I, Cepoi L, Chiriac T, Peshkova A, Cepoi A, Grozdov D. Accumulation and Effect of Silver Nanoparticles Functionalized with Spirulina platensis on Rats. Nanomaterials (Basel) 2021;11:2992. [PMID: 34835756 DOI: 10.3390/nano11112992] [Reference Citation Analysis]
44 Gomes A, Aguiar L, Ferraz R, Teixeira C, Gomes P. The Emerging Role of Ionic Liquid-Based Approaches for Enhanced Skin Permeation of Bioactive Molecules: A Snapshot of the Past Couple of Years. Int J Mol Sci 2021;22:11991. [PMID: 34769430 DOI: 10.3390/ijms222111991] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
45 Aizamddin MF, Mahat MM, Zainal Ariffin Z, Samsudin I, Razali MSM, Amir M'. Synthesis, Characterisation and Antibacterial Properties of Silicone-Silver Thin Film for the Potential of Medical Device Applications. Polymers (Basel) 2021;13:3822. [PMID: 34771378 DOI: 10.3390/polym13213822] [Reference Citation Analysis]
46 Gibała A, Żeliszewska P, Gosiewski T, Krawczyk A, Duraczyńska D, Szaleniec J, Szaleniec M, Oćwieja M. Antibacterial and Antifungal Properties of Silver Nanoparticles-Effect of a Surface-Stabilizing Agent. Biomolecules 2021;11:1481. [PMID: 34680114 DOI: 10.3390/biom11101481] [Reference Citation Analysis]
47 Moorthy K, Chang KC, Wu WJ, Hsu JY, Yu PJ, Chiang CK. Systematic Evaluation of Antioxidant Efficiency and Antibacterial Mechanism of Bitter Gourd Extract Stabilized Silver Nanoparticles. Nanomaterials (Basel) 2021;11:2278. [PMID: 34578594 DOI: 10.3390/nano11092278] [Reference Citation Analysis]