BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: van Hengel IAJ, Tierolf MWAM, Fratila-Apachitei LE, Apachitei I, Zadpoor AA. Antibacterial Titanium Implants Biofunctionalized by Plasma Electrolytic Oxidation with Silver, Zinc, and Copper: A Systematic Review. Int J Mol Sci 2021;22:3800. [PMID: 33917615 DOI: 10.3390/ijms22073800] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Nouri A, Rohani Shirvan A, Li Y, Wen C. Surface modification of additively manufactured metallic biomaterials with active antipathogenic properties. Smart Materials in Manufacturing 2023;1:100001. [DOI: 10.1016/j.smmf.2022.100001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Yao L, Wang H, Li L, Cao Z, Dong Y, Yao L, Lou W, Zheng S, Shi Y, Shen X, Cai C, Sheng L. Development and evaluation of osteogenesis and antibacterial properties of strontium/silver-functionalized hierarchical micro/nano-titanium implants. Materials & Design 2022. [DOI: 10.1016/j.matdes.2022.111425] [Reference Citation Analysis]
3 Soma T, Iwasaki R, Sato Y, Kobayashi T, Ito E, Matsumoto T, Kimura A, Homma F, Saiki K, Takahashi Y, Miyamoto K, Matsumoto M, Nakamura M, Morita M, Ishii K, Asoda S, Kawana H, Xingyu Z, Aizawa M, Nakagawa T, Miyamoto T. An ionic silver coating prevents implant-associated infection by anaerobic bacteria in vitro and in vivo in mice. Sci Rep 2022;12:18387. [PMID: 36319854 DOI: 10.1038/s41598-022-23322-6] [Reference Citation Analysis]
4 Diez-Escudero A, Carlsson E, Andersson B, Järhult JD, Hailer NP. Trabecular Titanium for Orthopedic Applications: Balancing Antimicrobial with Osteoconductive Properties by Varying Silver Contents. ACS Appl Mater Interfaces 2022. [PMID: 36069272 DOI: 10.1021/acsami.2c11139] [Reference Citation Analysis]
5 Alamdari AA, Hashemkhani M, Hendessi S, Guner PT, Acar HY, Kavakli IH, Unal U, Motallebzadeh A. In vitro antibacterial and cytotoxicity assessment of magnetron sputtered Ti1.5ZrTa0.5Nb0.5W0.5 refractory high-entropy alloy doped with Ag nanoparticles. Vacuum 2022;203:111286. [DOI: 10.1016/j.vacuum.2022.111286] [Reference Citation Analysis]
6 Paiva JCC, Oliveira L, Vaz MF, Costa-de-Oliveira S. Biodegradable Bone Implants as a New Hope to Reduce Device-Associated Infections-A Systematic Review. Bioengineering (Basel) 2022;9:409. [PMID: 36004934 DOI: 10.3390/bioengineering9080409] [Reference Citation Analysis]
7 Parizi MK, Doll K, Rahim MI, Mikolai C, Winkel A, Stiesch M. Antibacterial and Cytocompatible: Combining Silver Nitrate with Strontium Acetate Increases the Therapeutic Window. IJMS 2022;23:8058. [DOI: 10.3390/ijms23158058] [Reference Citation Analysis]
8 Bordbar-khiabani A, Gasik M. Smart Hydrogels for Advanced Drug Delivery Systems. IJMS 2022;23:3665. [DOI: 10.3390/ijms23073665] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
9 Wang J, Liang M, Pan Y, Sun S, Shen T, Wei X, Zhu Y, Liu J, Huang Q. Control of surface composition and microstructure of nano super-hydrophilic TiO2-CuOy coatings through reactive sputtering to improve antibacterial ability, corrosion resistance, and biocompatibility. Applied Surface Science 2022;578:151893. [DOI: 10.1016/j.apsusc.2021.151893] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Banti CN, Hadjikakou SK. Antimicrobial Materials with Medical Applications. Int J Mol Sci 2022;23:1890. [PMID: 35163811 DOI: 10.3390/ijms23031890] [Reference Citation Analysis]
11 Alamdari AA, Unal U, Motallebzadeh A. Investigation of microstructure, mechanical properties, and biocorrosion behavior of Ti1.5ZrTa0.5Nb0.5W0.5 refractory high-entropy alloy film doped with Ag nanoparticles. Surfaces and Interfaces 2022;28:101617. [DOI: 10.1016/j.surfin.2021.101617] [Reference Citation Analysis]
12 Chen D, Li Y, Zhao X, He H, Sun G, Li W, Wang X. Spray-deposited Ag nanoparticles on micro/nano structured Ti6Al4V surface for enhanced bactericidal property and cytocompatibility. Surface and Coatings Technology 2022;431:128010. [DOI: 10.1016/j.surfcoat.2021.128010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Bazaka O, Prasad K, Levchenko I, Jacob MV, Bazaka K, Kingshott P, Crawford RJ, Ivanova EP. Decontamination-Induced Modification of Bioactivity in Essential Oil-Based Plasma Polymer Coatings. Molecules 2021;26:7133. [PMID: 34885713 DOI: 10.3390/molecules26237133] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Chen D, Li Y, He H, Li W, Zeng R, Wang X. Covalent incorporation of Ag nanoparticles into TiO2 nanotubes on Ti6Al4V by molecular grafting for enhancing antibacterial effect. Surface and Coatings Technology 2021;426:127773. [DOI: 10.1016/j.surfcoat.2021.127773] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Li W, Thian ES, Wang M, Wang Z, Ren L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Adv Sci (Weinh) 2021;8:e2100368. [PMID: 34351704 DOI: 10.1002/advs.202100368] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 27.0] [Reference Citation Analysis]
16 Fang Y, Attarilar S, Yang Z, Wei G, Fu Y, Wang L. Toward Bactericidal Enhancement of Additively Manufactured Titanium Implants. Coatings 2021;11:668. [DOI: 10.3390/coatings11060668] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Paulitsch-Fuchs AH, Wolrab L, Eck N, Dyer NP, Bödendorfer B, Lohberger B. TiAl6V4 Alloy Surface Modifications and Their Impact on Biofilm Development of S. aureus and S. epidermidis. J Funct Biomater 2021;12:36. [PMID: 34069837 DOI: 10.3390/jfb12020036] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]