BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brocca S, Grandori R, Longhi S, Uversky V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int J Mol Sci 2020;21:E9045. [PMID: 33260713 DOI: 10.3390/ijms21239045] [Cited by in Crossref: 42] [Cited by in F6Publishing: 48] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Pesce G, Brocca S, Grandori R, Longhi S, Uversky VN. Droplets of life: role of phase separation in virus replication and compartmentalization. Droplets of Life 2023. [DOI: 10.1016/b978-0-12-823967-4.00019-1] [Reference Citation Analysis]
2 Uversky VN. Phase separation and infectious diseases. Droplets of Life 2023. [DOI: 10.1016/b978-0-12-823967-4.00010-5] [Reference Citation Analysis]
3 Patil A. Enrichment patterns of intrinsic disorder in proteins. Biophys Rev 2022. [DOI: 10.1007/s12551-022-01016-7] [Reference Citation Analysis]
4 Fonin A, Antifeeva I, Kuznetsova I, Turoverov K, Zaslavsky B, Kulkarni P, Uversky V. Biological soft matter: intrinsically disordered proteins in liquid–liquid phase separation and biomolecular condensates. Essays in Biochemistry 2022. [DOI: 10.1042/ebc20220052] [Reference Citation Analysis]
5 Hasenahuer MA, Sanchis-juan A, Laskowski RA, Baker JA, Stephenson JD, Orengo CA, Lucy Raymond F, Thornton JM. Mapping the Constrained Coding Regions in the human genome to their corresponding proteins. Journal of Molecular Biology 2022. [DOI: 10.1016/j.jmb.2022.167892] [Reference Citation Analysis]
6 Hagan MF, Mohajerani F. Self-Assembly Coupled to Liquid-Liquid Phase Separation.. [DOI: 10.1101/2022.10.13.512015] [Reference Citation Analysis]
7 Li J, Zhao H, McMahon A, Yan S. APE1 assembles biomolecular condensates to promote the ATR-Chk1 DNA damage response in nucleolus. Nucleic Acids Res 2022:gkac853. [PMID: 36200829 DOI: 10.1093/nar/gkac853] [Reference Citation Analysis]
8 Persi E, Wolf YI, Karamycheva S, Makarova KS, Koonin EV. Compensatory Relationship between Low Complexity Regions and Gene Paralogy in the Evolution of Prokaryotes.. [DOI: 10.1101/2022.09.23.509281] [Reference Citation Analysis]
9 Gondelaud F, Pesce G, Nilsson JF, Bignon C, Ptchelkine D, Gerlier D, Mathieu C, Longhi S. Functional benefit of structural disorder for the replication of measles, Nipah and Hendra viruses. Essays Biochem 2022:EBC20220045. [PMID: 36148633 DOI: 10.1042/EBC20220045] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Diallo MA, Pirotte S, Hu Y, Morvan L, Rakus K, Suárez NM, PoTsang L, Saneyoshi H, Xu Y, Davison AJ, Tompa P, Sussman JL, Vanderplasschen A. A fish herpesvirus highlights functional diversities among Zα domains related to phase separation induction and A-to-Z conversion. Nucleic Acids Res 2022:gkac761. [PMID: 36130731 DOI: 10.1093/nar/gkac761] [Reference Citation Analysis]
11 Hasenahuer MA, Sanchis-juan A, Laskowski RA, Baker JA, Stephenson JD, Orengo CA, Raymond FL, Thornton JM. Mapping the Constrained Coding Regions in the human genome to their corresponding proteins.. [DOI: 10.1101/2022.09.12.507545] [Reference Citation Analysis]
12 Tarczewska A, Bielak K, Zoglowek A, Sołtys K, Dobryszycki P, Ożyhar A, Różycka M. The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization. Biomolecules 2022;12:1266. [DOI: 10.3390/biom12091266] [Reference Citation Analysis]
13 Peng Q, Tan S, Xia L, Wu N, Oyang L, Tang Y, Su M, Luo X, Wang Y, Sheng X, Zhou Y, Liao Q. Phase separation in Cancer: From the Impacts and Mechanisms to Treatment potentials. Int J Biol Sci 2022;18:5103-22. [PMID: 35982902 DOI: 10.7150/ijbs.75410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Li J, Zhao H, Mcmahon A, Yan S. APE1 assembles biomolecular condensates to promote the ATR-Chk1 DNA damage response in nucleolus.. [DOI: 10.1101/2022.08.22.504787] [Reference Citation Analysis]
15 Wei W, Bai L, Yan B, Meng W, Wang H, Zhai J, Si F, Zheng C. When liquid-liquid phase separation meets viral infections. Front Immunol 2022;13:985622. [DOI: 10.3389/fimmu.2022.985622] [Reference Citation Analysis]
16 Gonnin L, Richard CA, Gutsche I, Chevret D, Troussier J, Vasseur JJ, Debart F, Eléouët JF, Galloux M. Importance of RNA length for in vitro encapsidation by the nucleoprotein of human Respiratory Syncytial Virus. J Biol Chem 2022;:102337. [PMID: 35931116 DOI: 10.1016/j.jbc.2022.102337] [Reference Citation Analysis]
17 Roden C, Dai Y, Giannetti C, Seim I, Lee M, Sealfon R, Mclaughlin G, Boerneke M, Iserman C, Wey S, Ekena J, Troyanskaya O, Weeks K, You L, Chilkoti A, Gladfelter A. Double-stranded RNA drives SARS-CoV-2 nucleocapsid protein to undergo phase separation at specific temperatures. Nucleic Acids Research 2022. [DOI: 10.1093/nar/gkac596] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Li H, Ernst C, Kolonko-Adamska M, Greb-Markiewicz B, Man J, Parissi V, Ng BW. Phase separation in viral infections. Trends Microbiol 2022:S0966-842X(22)00161-5. [PMID: 35902318 DOI: 10.1016/j.tim.2022.06.005] [Reference Citation Analysis]
19 Girdhar A, Guo L. Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. Biology 2022;11:1009. [DOI: 10.3390/biology11071009] [Reference Citation Analysis]
20 Uversky VN. State without borders: Membrane-less organelles and liquid–liquid phase transitions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2022;1869:119251. [DOI: 10.1016/j.bbamcr.2022.119251] [Reference Citation Analysis]
21 Sun X, Yang J, Deng X, Wei Y, Wang C, Guo Y, Yang H, Yang L, Miao C, Lv J, Xiao Y, Zhang H, Yao Z, Wang Q. Interactions of Bacterial Toxin CNF1 and Host JAK1/2 Driven by Liquid-Liquid Phase Separation Enhance Macrophage Polarization. mBio 2022;:e0114722. [PMID: 35766380 DOI: 10.1128/mbio.01147-22] [Reference Citation Analysis]
22 Brownsword MJ, Locker N. A little less aggregation a little more replication: Viral manipulation of stress granules. WIREs RNA 2022. [DOI: 10.1002/wrna.1741] [Reference Citation Analysis]
23 Llauger G, Melero R, Monti D, Sycz G, Huck-iriart C, Cerutti ML, Klinke S, Mikkelsen E, Tijman A, Arranz R, Alfonso V, Arellano SM, Goldbaum FA, Sterckx YGJ, Carazo J, Kaufman SB, Dans PD, Vas MD, Otero LH. A fijivirus major viroplasm protein shows RNA-stimulated ATPase activity by adopting pentameric and hexameric assemblies of dimers.. [DOI: 10.1101/2022.04.16.488468] [Reference Citation Analysis]
24 Deleanu M, Deschaume O, Cipelletti L, Hernandez JF, Bartic C, Cottet H, Chamieh J. Taylor Dispersion Analysis and Atomic Force Microscopy Provide a Quantitative Insight into the Aggregation Kinetics of Aβ (1-40)/Aβ (1-42) Amyloid Peptide Mixtures. ACS Chem Neurosci 2022;13:786-95. [PMID: 35201761 DOI: 10.1021/acschemneuro.1c00784] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Tenchov R, Zhou QA. Intrinsically Disordered Proteins: Perspective on COVID-19 Infection and Drug Discovery. ACS Infect Dis 2022;8:422-32. [PMID: 35196007 DOI: 10.1021/acsinfecdis.2c00031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. Biophysics Rev 2022;3:011306. [DOI: 10.1063/5.0080512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Abyzov A, Blackledge M, Zweckstetter M. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chem Rev 2022. [PMID: 35179885 DOI: 10.1021/acs.chemrev.1c00774] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
28 Pesce G, Gondelaud F, Ptchelkine D, Nilsson JF, Bignon C, Cartalas J, Fourquet P, Longhi S. Experimental Evidence of Intrinsic Disorder and Amyloid Formation by the Henipavirus W Proteins. Int J Mol Sci 2022;23:923. [PMID: 35055108 DOI: 10.3390/ijms23020923] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Vazquez DS, Toledo PL, Gianotti AR, Ermácora MR. Protein conformation and biomolecular condensates. Current Research in Structural Biology 2022;4:285-307. [DOI: 10.1016/j.crstbi.2022.09.004] [Reference Citation Analysis]
30 Bloyet LM. The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021;13:2465. [PMID: 34960734 DOI: 10.3390/v13122465] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Hayashi M, Schultz EP, Lanchy JM, Lodmell JS. Time-Resolved Analysis of N-RNA Interactions during RVFV Infection Shows Qualitative and Quantitative Shifts in RNA Encapsidation and Packaging. Viruses 2021;13:2417. [PMID: 34960686 DOI: 10.3390/v13122417] [Reference Citation Analysis]
32 Dang M, Song J. Structural basis of anti-SARS-CoV-2 activity of HCQ: specific binding to N protein to disrupt its interaction with nucleic acids and LLPS. QRB Discovery 2021;2. [DOI: 10.1017/qrd.2021.12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Lyonnais S, Sadiq SK, Lorca-Oró C, Dufau L, Nieto-Marquez S, Escribà T, Gabrielli N, Tan X, Ouizougun-Oubari M, Okoronkwo J, Reboud-Ravaux M, Gatell JM, Marquet R, Paillart JC, Meyerhans A, Tisné C, Gorelick RJ, Mirambeau G. The HIV-1 Nucleocapsid Regulates Its Own Condensation by Phase-Separated Activity-Enhancing Sequestration of the Viral Protease during Maturation. Viruses 2021;13:2312. [PMID: 34835118 DOI: 10.3390/v13112312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Tamburrini KC, Terrapon N, Lombard V, Bissaro B, Longhi S, Berrin JG. Bioinformatic Analysis of Lytic Polysaccharide Monooxygenases Reveals the Pan-Families Occurrence of Intrinsically Disordered C-Terminal Extensions. Biomolecules 2021;11:1632. [PMID: 34827630 DOI: 10.3390/biom11111632] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
35 Lopez N, Camporeale G, Salgueiro M, Borkosky SS, Visentín A, Peralta-Martinez R, Loureiro ME, de Prat-Gay G. Deconstructing virus condensation. PLoS Pathog 2021;17:e1009926. [PMID: 34648608 DOI: 10.1371/journal.ppat.1009926] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 15.0] [Reference Citation Analysis]
36 Salladini E, Gondelaud F, Nilsson JF, Pesce G, Bignon C, Murrali MG, Fabre R, Pierattelli R, Kajava AV, Horvat B, Gerlier D, Mathieu C, Longhi S. Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation. Biomolecules 2021;11:1324. [PMID: 34572537 DOI: 10.3390/biom11091324] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
37 Aledo JC. The Role of Methionine Residues in the Regulation of Liquid-Liquid Phase Separation. Biomolecules 2021;11:1248. [PMID: 34439914 DOI: 10.3390/biom11081248] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
38 Cardone C, Caseau CM, Bardiaux B, Thureaux A, Galloux M, Bajorek M, Eléouët JF, Litaudon M, Bontems F, Sizun C. A Structural and Dynamic Analysis of the Partially Disordered Polymerase-Binding Domain in RSV Phosphoprotein. Biomolecules 2021;11:1225. [PMID: 34439894 DOI: 10.3390/biom11081225] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
39 Spegg V, Altmeyer M. Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair (Amst) 2021;106:103179. [PMID: 34311273 DOI: 10.1016/j.dnarep.2021.103179] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
40 Del Veliz S, Rivera L, Bustos DM, Uhart M. Analysis of SARS-CoV-2 nucleocapsid phosphoprotein N variations in the binding site to human 14-3-3 proteins. Biochem Biophys Res Commun 2021;569:154-60. [PMID: 34246830 DOI: 10.1016/j.bbrc.2021.06.100] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
41 Seim I, Roden CA, Gladfelter AS. Role of spatial patterning of N-protein interactions in SARS-CoV-2 genome packaging. Biophys J 2021;120:2771-84. [PMID: 34214535 DOI: 10.1016/j.bpj.2021.06.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
42 Sloand JN, Culp TE, Wonderling NM, Gomez ED, Medina SH. Mechanomorphogenic Films Formed via Interfacial Assembly of Fluorinated Amino Acids. Adv Funct Materials 2021;31:2104223. [DOI: 10.1002/adfm.202104223] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Reuper H, Götte B, Williams L, Tan TJC, McInerney GM, Panas MD, Krenz B. Arabidopsis thaliana G3BP Ortholog Rescues Mammalian Stress Granule Phenotype across Kingdoms. Int J Mol Sci 2021;22:6287. [PMID: 34208100 DOI: 10.3390/ijms22126287] [Reference Citation Analysis]
44 Hagan MF, Grason GM. Equilibrium mechanisms of self-limiting assembly. Rev Mod Phys 2021;93. [DOI: 10.1103/revmodphys.93.025008] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 22.0] [Reference Citation Analysis]
45 Seim I, Roden CA, Gladfelter AS. Role of spatial patterning of N-protein interactions in SARS-CoV-2 genome packaging. bioRxiv 2021:2021. [PMID: 33442696 DOI: 10.1101/2021.01.06.425605] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Goretzki B, Guhl C, Tebbe F, Harder JM, Hellmich UA. Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions in Channel Function and Regulation. J Mol Biol 2021;433:166931. [PMID: 33741410 DOI: 10.1016/j.jmb.2021.166931] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
47 Kumar N, Kaushik R, Tennakoon C, Uversky VN, Longhi S, Zhang KYJ, Bhatia S. Comprehensive Intrinsic Disorder Analysis of 6108 Viral Proteomes: From the Extent of Intrinsic Disorder Penetrance to Functional Annotation of Disordered Viral Proteins. J Proteome Res 2021;20:2704-13. [PMID: 33719450 DOI: 10.1021/acs.jproteome.1c00011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
48 Lyonnais S, Sadiq SK, Lorca-oró C, Dufau L, Nieto-marquez S, Escriba T, Gabrielli N, Tan X, Ouizougun-oubari M, Okoronkwo J, Reboud-ravaux M, Gatell JM, Marquet R, Paillart J, Meyerhans A, Tisné C, Gorelick RJ, Mirambeau G. The HIV-1 ribonucleoprotein dynamically regulates its condensate behavior and drives acceleration of protease activity through membraneless granular phase separation.. [DOI: 10.1101/528638] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]