BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao Y, Patil S, Qian A. The Role of MicroRNAs in Bone Metabolism and Disease. Int J Mol Sci 2020;21:E6081. [PMID: 32846921 DOI: 10.3390/ijms21176081] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Sun D, Chen Y, Liu X, Huang G, Cheng G, Yu C, Fang J. miR-34a-5p facilitates osteogenic differentiation of bone marrow mesenchymal stem cells and modulates bone metabolism by targeting HDAC1 and promoting ER-α transcription. Connect Tissue Res 2023;64:126-38. [PMID: 36537660 DOI: 10.1080/03008207.2022.2108415] [Reference Citation Analysis]
2 Zhou Q, Zhou L, Li J. MiR-218-5p-dependent SOCS3 downregulation increases osteoblast differentiation inpostmenopausal osteoporosis. J Orthop Surg Res 2023;18:109. [PMID: 36793115 DOI: 10.1186/s13018-023-03580-4] [Reference Citation Analysis]
3 Liu Q, Bao H, Zhang S, Song T, Li C, Sun G, Sun X, Fu T, Wang Y, Liang P. Identification of a cellular senescence-related-lncRNA (SRlncRNA) signature to predict the overall survival of glioma patients and the tumor immune microenvironment. Front Genet 2023;14:1096792. [PMID: 36911393 DOI: 10.3389/fgene.2023.1096792] [Reference Citation Analysis]
4 Zheng Z, Wu L, Li Z, Tang R, Li H, Huang Y, Wang T, Xu S, Cheng H, Ye Z, Xiao D, Lin X, Wu G, Jaspers RT, Pathak JL. Mir155 regulates osteogenesis and bone mass phenotype via targeting S1pr1 gene. Elife 2023;12. [PMID: 36598122 DOI: 10.7554/eLife.77742] [Reference Citation Analysis]
5 Gao Y, Fu Z, Guan J, Liu X, Zhang Q. The role of Notch signaling pathway in metabolic bone diseases. Biochem Pharmacol 2023;207:115377. [PMID: 36513140 DOI: 10.1016/j.bcp.2022.115377] [Reference Citation Analysis]
6 Smout D, Van Craenenbroeck AH, Jørgensen HS, Evenepoel P. MicroRNAs: emerging biomarkers and therapeutic targets of bone fragility in chronic kidney disease. Clin Kidney J 2023;16:408-21. [PMID: 36865016 DOI: 10.1093/ckj/sfac219] [Reference Citation Analysis]
7 Zhang K, Liu X, Tang Y, Liu Z, Yi Q, Wang L, Geng B, Xia Y. Fluid Shear Stress Promotes Osteoblast Proliferation and Suppresses Mitochondrial-Mediated Osteoblast Apoptosis Through the miR-214-3p-ATF4 Signaling Axis. Physiol Res 2022;71:527-38. [DOI: 10.33549/physiolres.934917] [Reference Citation Analysis]
8 Nagar G, Mittal P, Gupta SRR, Pahuja M, Sanger M, Mishra R, Singh A, Singh IK. Multi-omics therapeutic perspective on ACVR1 gene: from genetic alterations to potential targeting. Brief Funct Genomics 2022:elac026. [PMID: 36003055 DOI: 10.1093/bfgp/elac026] [Reference Citation Analysis]
9 Quillen EE, Foster J, Sheldrake A, Stainback M, Glenn J, Cox LA, Bredbenner TL. Circulating miRNAs associated with bone mineral density in healthy adult baboons. J Orthop Res 2022;40:1827-33. [PMID: 34799865 DOI: 10.1002/jor.25215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Garbo S, Maione R, Tripodi M, Battistelli C. Next RNA Therapeutics: The Mine of Non-Coding. IJMS 2022;23:7471. [DOI: 10.3390/ijms23137471] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Chen Y, Chen Q, Zhong M, Xu C, Wu Y, Chen R. miR-637 Inhibits Osteogenic Differentiation of Human Intervertebral Disc Cartilage Endplate Stem Cells by Targeting WNT5A. J Invest Surg 2022;:1-9. [PMID: 35296211 DOI: 10.1080/08941939.2022.2050857] [Reference Citation Analysis]
12 Xu J, Li M, Pei W, Ding J, Pan Y, Peng H, Lin S, Huang Y, Zhao E. Reduced Circulating Levels of miR-491-5p and miR-485-3p Are Associated with the Occurrence of Vertebral Fractures in Postmenopausal Women with Osteoporosis. Genetics Research 2022;2022:1-8. [DOI: 10.1155/2022/3838126] [Reference Citation Analysis]
13 Zheng Z, Wu L, Li Z, Tang R, Li H, Huang Y, Ye Z, Xiao D, Lin X, Wu G, Jaspers RT, Pathak JL. MicroRNA-155 regulates osteogenesis and bone mass phenotype via targeting S1PR1 gene.. [DOI: 10.1101/2022.02.18.480982] [Reference Citation Analysis]
14 Krishnan RH, Sadu L, Das UR, Satishkumar S, Pranav Adithya S, Saranya I, Akshaya R, Selvamurugan N. Role of p300, a histone acetyltransferase enzyme, in osteoblast differentiation. Differentiation 2022. [DOI: 10.1016/j.diff.2022.02.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Lehmann TP, Guderska U, Kałek K, Marzec M, Urbanek A, Czernikiewicz A, Sąsiadek M, Karpiński P, Pławski A, Głowacki M, Jagodziński PP. The Regulation of Collagen Processing by miRNAs in Disease and Possible Implications for Bone Turnover. IJMS 2021;23:91. [DOI: 10.3390/ijms23010091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Feng R, Patil S, Zhao X, Miao Z, Qian A. RNA Therapeutics - Research and Clinical Advancements. Front Mol Biosci 2021;8:710738. [PMID: 34631795 DOI: 10.3389/fmolb.2021.710738] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
17 Lee S, Hong N, Kim Y, Park S, Kim KJ, Jeong J, Jung HI, Rhee Y. Circulating miR-122-5p and miR-375 as Potential Biomarkers for Bone Mass Recovery after Parathyroidectomy in Patients with Primary Hyperparathyroidism: A Proof-of-Concept Study. Diagnostics (Basel) 2021;11:1704. [PMID: 34574045 DOI: 10.3390/diagnostics11091704] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Gao Y, Patil S, Jia J. The Development of Molecular Biology of Osteoporosis. Int J Mol Sci 2021;22:8182. [PMID: 34360948 DOI: 10.3390/ijms22158182] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
19 Mao L, Guo J, Hu L, Li L, Xu J, Zou J. The effects of biophysical stimulation on osteogenic differentiation and the mechanisms from ncRNAs. Cell Biochem Funct 2021;39:727-39. [PMID: 34041775 DOI: 10.1002/cbf.3650] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
20 Zhao X, Patil S, Xu F, Lin X, Qian A. Role of Biomolecules in Osteoclasts and Their Therapeutic Potential for Osteoporosis. Biomolecules 2021;11:747. [PMID: 34067783 DOI: 10.3390/biom11050747] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
21 Zhang B, Chen G, Yang X, Fan T, Chen X, Chen Z. Dysregulation of MicroRNAs in Hypertrophy and Ossification of Ligamentum Flavum: New Advances, Challenges, and Potential Directions. Front Genet 2021;12:641575. [PMID: 33912216 DOI: 10.3389/fgene.2021.641575] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
22 Sun Q, Liu S, Feng J, Kang Y, Zhou Y, Guo S. Current Status of MicroRNAs that Target the Wnt Signaling Pathway in Regulation of Osteogenesis and Bone Metabolism: A Review. Med Sci Monit 2021;27:e929510. [PMID: 33828067 DOI: 10.12659/MSM.929510] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Preethi KA, Lakshmanan G, Sekar D. Antagomir technology in the treatment of different types of cancer. Epigenomics 2021;13:481-4. [PMID: 33719531 DOI: 10.2217/epi-2020-0439] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
24 Andrée L, Yang F, Brock R, Leeuwenburgh SCG. Designing biomaterials for the delivery of RNA therapeutics to stimulate bone healing. Mater Today Bio 2021;10:100105. [PMID: 33912824 DOI: 10.1016/j.mtbio.2021.100105] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
25 Patil S, Dang K, Zhao X, Gao Y, Qian A. Role of LncRNAs and CircRNAs in Bone Metabolism and Osteoporosis. Front Genet 2020;11:584118. [PMID: 33281877 DOI: 10.3389/fgene.2020.584118] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]