BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: André AAM, Spruijt E. Liquid-Liquid Phase Separation in Crowded Environments. Int J Mol Sci 2020;21:E5908. [PMID: 32824618 DOI: 10.3390/ijms21165908] [Cited by in Crossref: 20] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Nishiguchi A, Ito S, Nagasaka K, Taguchi T. Liquid-Liquid Phase-Separated Hydrogel with Tunable Sol-Gel Transition Behavior as a Hotmelt-Adhesive Postoperative Barrier. ACS Appl Bio Mater 2022. [PMID: 36150218 DOI: 10.1021/acsabm.2c00640] [Reference Citation Analysis]
2 Lach RS, Qiu C, Kajbaf EZ, Baxter N, Han D, Wang A, Lock H, Chirikian O, Pruitt B, Wilson MZ. Nucleation of the destruction complex on the centrosome accelerates degradation of β-catenin and regulates Wnt signal transmission. Proc Natl Acad Sci U S A 2022;119:e2204688119. [PMID: 36037369 DOI: 10.1073/pnas.2204688119] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Bai Q, Chen X, Chen J, Liu Z, Lin YN, Yang S, Liang D. Morphology and Dynamics of Coexisting Phases in Coacervate Solely Controlled by Crowded Environment. ACS Macro Lett 2022;:1107-11. [PMID: 36006377 DOI: 10.1021/acsmacrolett.2c00409] [Reference Citation Analysis]
4 Monette A, Niu M, Nijhoff Asser M, Gorelick RJ, Mouland AJ. Scaffolding viral protein NC nucleates phase separation of the HIV-1 biomolecular condensate. Cell Rep 2022;40:111251. [PMID: 36001979 DOI: 10.1016/j.celrep.2022.111251] [Reference Citation Analysis]
5 Angert I, Karuka SR, Mansky LM, Mueller JD. Partitioning of ribonucleoprotein complexes from the cellular actin cortex. Sci Adv 2022;8:eabj3236. [PMID: 35984883 DOI: 10.1126/sciadv.abj3236] [Reference Citation Analysis]
6 Islam M, Shen F, Regmi D, Petersen K, Karim MRU, Du D. Tau liquid-liquid phase separation: At the crossroads of tau physiology and tauopathy. J Cell Physiol 2022. [PMID: 35980344 DOI: 10.1002/jcp.30853] [Reference Citation Analysis]
7 Zwicker D. The intertwined physics of active chemical reactions and phase separation. Current Opinion in Colloid & Interface Science 2022. [DOI: 10.1016/j.cocis.2022.101606] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Gorensek-benitez AH, Kirk B, Myers JK. Protein Fibrillation under Crowded Conditions. Biomolecules 2022;12:950. [DOI: 10.3390/biom12070950] [Reference Citation Analysis]
9 Opdam J, Gandhi P, Kuhnhold A, Schilling T, Tuinier R. Excluded volume interactions and phase stability in mixtures of hard spheres and hard rods. Phys Chem Chem Phys 2022;24:11820-7. [PMID: 35508061 DOI: 10.1039/d2cp00477a] [Reference Citation Analysis]
10 Laghmach R, Alshareedah I, Pham M, Raju M, Banerjee PR, Potoyan DA. RNA chain length and stoichiometry govern surface tension and stability of protein-RNA condensates. iScience 2022;25:104105. [PMID: 35378855 DOI: 10.1016/j.isci.2022.104105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Gabryelczyk B, Alag R, Philips M, Low K, Venkatraman A, Kannaian B, Shi X, Linder M, Pervushin K, Miserez A. In vivo liquid–liquid phase separation protects amyloidogenic and aggregation‐prone peptides during overexpression in Escherichia coli. Protein Science 2022;31. [DOI: 10.1002/pro.4292] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Taketomi Y, Yamaguchi Y, Sakurai S, Tanaka M. Evaluation of DNA-mediated electron transfer using a hole-trapping nucleobase under crowded conditions. Org Biomol Chem 2022;20:2043-7. [PMID: 35005766 DOI: 10.1039/d1ob01669e] [Reference Citation Analysis]
13 Vorontsova I, Vallmitjana A, Torrado B, Schilling TF, Hall JE, Gratton E, Malacrida L. In vivo macromolecular crowding is differentially modulated by aquaporin 0 in zebrafish lens: Insights from a nanoenvironment sensor and spectral imaging. Sci Adv 2022;8:eabj4833. [PMID: 35171678 DOI: 10.1126/sciadv.abj4833] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zhou L, Koh JJ, Wu J, Fan X, Chen H, Hou X, Jiang L, Lu X, Li Z, He C. Fatty Acid-Based Coacervates as a Membrane-free Protocell Model. Bioconjug Chem 2022. [PMID: 35138820 DOI: 10.1021/acs.bioconjchem.1c00559] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Gupta M, Chowdhury PK. Protein dynamics as a sensor for macromolecular crowding: Insights into mixed crowding. Journal of Molecular Liquids 2022;347:117969. [DOI: 10.1016/j.molliq.2021.117969] [Reference Citation Analysis]
16 Klett K, Cherstvy AG, Shin J, Sokolov IM, Metzler R. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions. Phys Rev E 2021;104:064603. [PMID: 35030844 DOI: 10.1103/PhysRevE.104.064603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Gaur D, Dubey NC, Tripathi BP. Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Adv Colloid Interface Sci 2022;299:102566. [PMID: 34864354 DOI: 10.1016/j.cis.2021.102566] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
18 Jo Y, Jang J, Song D, Park H, Jung Y. Determinants for intrinsically disordered protein recruitment into phase-separated protein condensates. Chem Sci 2022;13:522-30. [DOI: 10.1039/d1sc05672g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Jia TZ, Kuruma Y. Increasing complexity of primitive compartments. Biophys Physicobiol 2021;18:269-73. [PMID: 34909364 DOI: 10.2142/biophysico.bppb-v18.032] [Reference Citation Analysis]
20 Michels JJ, Brzezinski M, Scheidt T, Lemke EA, Parekh SH. Role of Solvent Compatibility in the Phase Behavior of Binary Solutions of Weakly Associating Multivalent Polymers. Biomacromolecules 2021. [PMID: 34866377 DOI: 10.1021/acs.biomac.1c01301] [Reference Citation Analysis]
21 Tom JK, Deniz AA. Complex dynamics of multicomponent biological coacervates. Current Opinion in Colloid & Interface Science 2021;56:101488. [DOI: 10.1016/j.cocis.2021.101488] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
22 Samanta N, Ribeiro SS, Becker M, Laborie E, Pollak R, Timr S, Sterpone F, Ebbinghaus S. Sequestration of Proteins in Stress Granules Relies on the In-Cell but Not the In Vitro Folding Stability. J Am Chem Soc 2021;143:19909-18. [PMID: 34788540 DOI: 10.1021/jacs.1c09589] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Lyonnais S, Sadiq SK, Lorca-Oró C, Dufau L, Nieto-Marquez S, Escribà T, Gabrielli N, Tan X, Ouizougun-Oubari M, Okoronkwo J, Reboud-Ravaux M, Gatell JM, Marquet R, Paillart JC, Meyerhans A, Tisné C, Gorelick RJ, Mirambeau G. The HIV-1 Nucleocapsid Regulates Its Own Condensation by Phase-Separated Activity-Enhancing Sequestration of the Viral Protease during Maturation. Viruses 2021;13:2312. [PMID: 34835118 DOI: 10.3390/v13112312] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Gao Z, Zhang W, Chang R, Zhang S, Yang G, Zhao G. Liquid-Liquid Phase Separation: Unraveling the Enigma of Biomolecular Condensates in Microbial Cells. Front Microbiol 2021;12:751880. [PMID: 34759902 DOI: 10.3389/fmicb.2021.751880] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
25 Ishiguro A, Lu J, Ozawa D, Nagai Y, Ishihama A. ALS-linked FUS mutations dysregulate G-quadruplex-dependent liquid-liquid phase separation and liquid-to-solid transition. J Biol Chem 2021;297:101284. [PMID: 34624313 DOI: 10.1016/j.jbc.2021.101284] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
26 Xu Y, Shen Y, Michaels TCT, Baumann KN, Vigolo D, Peter Q, Lu Y, Saar KL, Vella D, Zhu H, Li B, Yang H, Guttenplan APM, Rodriguez‐garcia M, Klenerman D, Knowles TPJ. Deformable and Robust Core–Shell Protein Microcapsules Templated by Liquid–Liquid Phase‐Separated Microdroplets. Adv Mater Interfaces 2021;8:2101071. [DOI: 10.1002/admi.202101071] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Mimura M, Tomita S, Sugai H, Shinkai Y, Ishihara S, Kurita R. Uncharged Components of Single-Stranded DNA Modulate Liquid-Liquid Phase Separation With Cationic Linker Histone H1. Front Cell Dev Biol 2021;9:710729. [PMID: 34422830 DOI: 10.3389/fcell.2021.710729] [Reference Citation Analysis]
28 Xu Y, Qi R, Zhu H, Li B, Shen Y, Krainer G, Klenerman D, Knowles TPJ. Liquid-Liquid Phase-Separated Systems from Reversible Gel-Sol Transition of Protein Microgels. Adv Mater 2021;33:e2008670. [PMID: 34235786 DOI: 10.1002/adma.202008670] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
29 Robinson J, Raguseo F, Nuccio SP, Liano D, Di Antonio M. DNA G-quadruplex structures: more than simple roadblocks to transcription? Nucleic Acids Res 2021:gkab609. [PMID: 34255847 DOI: 10.1093/nar/gkab609] [Cited by in Crossref: 1] [Cited by in F6Publishing: 26] [Article Influence: 1.0] [Reference Citation Analysis]
30 Vweza AO, Song CG, Chong KT. Liquid-Liquid Phase Separation in the Presence of Macromolecular Crowding and State-dependent Kinetics. Int J Mol Sci 2021;22:6675. [PMID: 34206440 DOI: 10.3390/ijms22136675] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Deviri D, Safran SA. Physical theory of biological noise buffering by multicomponent phase separation. Proc Natl Acad Sci U S A 2021;118:e2100099118. [PMID: 34135122 DOI: 10.1073/pnas.2100099118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
32 Candelise N, Scaricamazza S, Salvatori I, Ferri A, Valle C, Manganelli V, Garofalo T, Sorice M, Misasi R. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. Int J Mol Sci 2021;22:6016. [PMID: 34199513 DOI: 10.3390/ijms22116016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
33 Sponga A, Arolas JL, Schwarz TC, Jeffries CM, Rodriguez Chamorro A, Kostan J, Ghisleni A, Drepper F, Polyansky A, De Almeida Ribeiro E, Pedron M, Zawadzka-Kazimierczuk A, Mlynek G, Peterbauer T, Doto P, Schreiner C, Hollerl E, Mateos B, Geist L, Faulkner G, Kozminski W, Svergun DI, Warscheid B, Zagrovic B, Gautel M, Konrat R, Djinović-Carugo K. Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase-separated condensates with α-actinin. Sci Adv 2021;7:eabg7653. [PMID: 34049882 DOI: 10.1126/sciadv.abg7653] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
34 Vodnala M, Choi EB, Fong YW. Low complexity domains, condensates, and stem cell pluripotency. World J Stem Cells 2021; 13(5): 416-438 [PMID: 34136073 DOI: 10.4252/wjsc.v13.i5.416] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Rai SK, Savastano A, Singh P, Mukhopadhyay S, Zweckstetter M. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease. Protein Sci 2021;30:1294-314. [PMID: 33930220 DOI: 10.1002/pro.4093] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
36 Sołtys K, Wycisk K, Ożyhar A. Liquid-liquid phase separation of the intrinsically disordered AB region of hRXRγ is driven by hydrophobic interactions. Int J Biol Macromol 2021;183:936-49. [PMID: 33971237 DOI: 10.1016/j.ijbiomac.2021.05.035] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Yewdall NA, André AA, Lu T, Spruijt E. Coacervates as models of membraneless organelles. Current Opinion in Colloid & Interface Science 2021;52:101416. [DOI: 10.1016/j.cocis.2020.101416] [Cited by in Crossref: 15] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
38 Altamash T, Ahmed W, Rasool S, Biswas KH. Intracellular Ionic Strength Sensing Using NanoLuc. Int J Mol Sci 2021;22:E677. [PMID: 33445497 DOI: 10.3390/ijms22020677] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
39 Jalihal AP, Schmidt A, Gao G, Little SR, Pitchiaya S, Walter NG. Hyperosmotic phase separation: Condensates beyond inclusions, granules and organelles. J Biol Chem 2021;296:100044. [PMID: 33168632 DOI: 10.1074/jbc.REV120.010899] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
40 Briata P, Gherzi R. Long Non-Coding RNA-Ribonucleoprotein Networks in the Post-Transcriptional Control of Gene Expression. Noncoding RNA 2020;6:E40. [PMID: 32957640 DOI: 10.3390/ncrna6030040] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]