BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moss DE. Improving Anti-Neurodegenerative Benefits of Acetylcholinesterase Inhibitors in Alzheimer's Disease: Are Irreversible Inhibitors the Future? Int J Mol Sci 2020;21:E3438. [PMID: 32414155 DOI: 10.3390/ijms21103438] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Kladnik J, Ristovski S, Kljun J, Defant A, Mancini I, Sepčić K, Turel I. Structural Isomerism and Enhanced Lipophilicity of Pyrithione Ligands of Organoruthenium(II) Complexes Increase Inhibition on AChE and BuChE. Int J Mol Sci 2020;21:E5628. [PMID: 32781544 DOI: 10.3390/ijms21165628] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Sini P, Dang TBC, Fais M, Galioto M, Padedda BM, Lugliè A, Iaccarino C, Crosio C. Cyanobacteria, Cyanotoxins, and Neurodegenerative Diseases: Dangerous Liaisons. Int J Mol Sci 2021;22:8726. [PMID: 34445429 DOI: 10.3390/ijms22168726] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
3 Ayed-boussema I, Hamdi H, Chaabani H, M’nassri A, Mokni M, Abid S. Fenpyroximate induced cytotoxicity and genotoxicity in Wistar rat brain and in human neuroblastoma (SH-SY5Y) cells: involvement of oxidative stress and apoptosis. NeuroToxicology 2022. [DOI: 10.1016/j.neuro.2022.05.009] [Reference Citation Analysis]
4 Kos J, Strharsky T, Stepankova S, Svrckova K, Oravec M, Hosek J, Imramovsky A, Jampilek J. Trimethoxycinnamates and Their Cholinesterase Inhibitory Activity. Applied Sciences 2021;11:4691. [DOI: 10.3390/app11104691] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Menghini L, Ferrante C, Carradori S, D'Antonio M, Orlando G, Cairone F, Cesa S, Filippi A, Fraschetti C, Zengin G, Ak G, Tacchini M, Iqbal K. Chemical and Bioinformatics Analyses of the Anti-Leishmanial and Anti-Oxidant Activities of Hemp Essential Oil. Biomolecules 2021;11:272. [PMID: 33673274 DOI: 10.3390/biom11020272] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
6 Helmi H, Fakhrudin N, Nurrochmad A, Ikawati Z. Caesalpinia sappan L. Ameliorates Scopolamine-Induced Memory Deficits in Mice via the cAMP/PKA/CREB/BDNF Pathway. Sci Pharm 2021;89:29. [DOI: 10.3390/scipharm89020029] [Reference Citation Analysis]
7 Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits 2022;15:795325. [DOI: 10.3389/fncir.2021.795325] [Reference Citation Analysis]
8 Fantacuzzi M, Amoroso R, Carradori S, De Filippis B. Resveratrol-based compounds and neurodegeneration: Recent insight in multitarget therapy. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114242] [Reference Citation Analysis]
9 Heise N, Friedrich S, Temml V, Schuster D, Siewert B, Csuk R. N-methylated diazabicyclo[3.2.2]nonane substituted triterpenoic acids are excellent, hyperbolic and selective inhibitors for butyrylcholinesterase. Eur J Med Chem 2022;227:113947. [PMID: 34731766 DOI: 10.1016/j.ejmech.2021.113947] [Reference Citation Analysis]
10 Yonekawa MKA, Penteado BB, Dal'Ongaro Rodrigues A, Lourenço EMG, Barbosa EG, das Neves SC, de Oliveira RJ, Marques MR, Silva DB, de Lima DP, Beatriz A, Oses JP, Dos S Jaques JA, Santos EDAD. l-Hypaphorine and d-hypaphorine: Specific antiacetylcholinesterase activity in rat brain tissue. Bioorg Med Chem Lett 2021;47:128206. [PMID: 34146704 DOI: 10.1016/j.bmcl.2021.128206] [Reference Citation Analysis]
11 Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021;13:654931. [PMID: 34326765 DOI: 10.3389/fnagi.2021.654931] [Reference Citation Analysis]
12 Han C, Wei BB, Shang PP, Guo XY, Bai LG, Ma ZY. Design, synthesis and evaluation of 2-(2-oxoethyl)pyrimidine-5-carboxamide derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem Lett 2022;:128873. [PMID: 35779827 DOI: 10.1016/j.bmcl.2022.128873] [Reference Citation Analysis]
13 Martinelli I, Tayebati SK, Roy P, Micioni Di Bonaventura MV, Moruzzi M, Cifani C, Amenta F, Tomassoni D. Obesity-Related Brain Cholinergic System Impairment in High-Fat-Diet-Fed Rats. Nutrients 2022;14:1243. [PMID: 35334899 DOI: 10.3390/nu14061243] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liao W, Xu J, Li B, Ruan Y, Li T, Liu J. Deciphering the Roles of Metformin in Alzheimer's Disease: A Snapshot. Front Pharmacol 2021;12:728315. [PMID: 35153733 DOI: 10.3389/fphar.2021.728315] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Liu YM, Fan JJ, Wang LN. Discovery of Guanidine Derivatives from Buthus martensii Karsch with Metal-Binding and Cholinesterase Inhibition Properties. Molecules 2021;26:6737. [PMID: 34771145 DOI: 10.3390/molecules26216737] [Reference Citation Analysis]
16 Moreira NCDS, Lima JEBDF, Fiori Marchiori M, Carvalho I, Sakamoto-hojo ET. Neuroprotective Effects of Cholinesterase Inhibitors: Current Scenario in Therapies for Alzheimer’s Disease and Future Perspectives. ADR 2022. [DOI: 10.3233/adr-210061] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Alzweiri M, Sweidan K, Saleh OA, Al-helo T. Synthesis and evaluation of new 2-oxo-1,2-dihydroquinoline-3-carboxamides as potent inhibitors against acetylcholinesterase enzyme. Med Chem Res. [DOI: 10.1007/s00044-022-02922-x] [Reference Citation Analysis]
18 Chan HJ, Yanshree, Roy J, Tipoe GL, Fung ML, Lim LW. Therapeutic Potential of Human Stem Cell Implantation in Alzheimer's Disease. Int J Mol Sci 2021;22:10151. [PMID: 34576314 DOI: 10.3390/ijms221810151] [Reference Citation Analysis]
19 Wang Z, Wang W, Zhu C, Gao X, Chu W. Evaluation of Antioxidative and Neuroprotective Activities of Total Flavonoids From Sea Buckthorn (Hippophae rhamnoides L.). Front Nutr 2022;9:861097. [DOI: 10.3389/fnut.2022.861097] [Reference Citation Analysis]
20 Lushchekina SV, Masson P. Slow-binding inhibitors of acetylcholinesterase of medical interest. Neuropharmacology 2020;177:108236. [PMID: 32712274 DOI: 10.1016/j.neuropharm.2020.108236] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
21 Stavrakov G, Philipova I, Lukarski A, Atanasova M, Georgiev B, Atanasova T, Konstantinov S, Doytchinova I. Discovery of a Novel Acetylcholinesterase Inhibitor by Fragment-Based Design and Virtual Screening. Molecules 2021;26:2058. [PMID: 33916760 DOI: 10.3390/molecules26072058] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Zandona A, Lihtar G, Maraković N, Miš K, Bušić V, Gašo-Sokač D, Pirkmajer S, Katalinić M. Vitamin B3-Based Biologically Active Compounds as Inhibitors of Human Cholinesterases. Int J Mol Sci 2020;21:E8088. [PMID: 33138280 DOI: 10.3390/ijms21218088] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]