BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huybrechts M, Cuypers A, Deckers J, Iven V, Vandionant S, Jozefczak M, Hendrix S. Cadmium and Plant Development: An Agony from Seed to Seed. Int J Mol Sci 2019;20:E3971. [PMID: 31443183 DOI: 10.3390/ijms20163971] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Haider FU, Ejaz M, Cheema SA, Khan MI, Zhao B, Liqun C, Salim MA, Naveed M, Khan N, Núñez-delgado A, Mustafa A. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environmental Research 2021;197:111031. [DOI: 10.1016/j.envres.2021.111031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol Environ Saf 2021;211:111887. [PMID: 33450535 DOI: 10.1016/j.ecoenv.2020.111887] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 28.0] [Reference Citation Analysis]
3 Chen H, Liang X, Gong X, Reinfelder JR, Chen H, Sun C, Liu X, Zhang S, Li F, Liu C, Zhao J, Yi J. Comparative physiological and transcriptomic analyses illuminate common mechanisms by which silicon alleviates cadmium and arsenic toxicity in rice seedlings. Journal of Environmental Sciences 2021;109:88-101. [DOI: 10.1016/j.jes.2021.02.030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Qiu CW, Zhang C, Wang NH, Mao W, Wu F. Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environ Pollut 2021;273:116486. [PMID: 33484996 DOI: 10.1016/j.envpol.2021.116486] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
5 Piacentini D, Corpas FJ, D'Angeli S, Altamura MM, Falasca G. Cadmium and arsenic-induced-stress differentially modulates Arabidopsis root architecture, peroxisome distribution, enzymatic activities and their nitric oxide content. Plant Physiol Biochem 2020;148:312-23. [PMID: 32000108 DOI: 10.1016/j.plaphy.2020.01.026] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
6 Luo W, Long Y, Feng Z, Li R, Huang X, Zhong J, Liu D, Zhao H. A γ-glutamylcysteine ligase AcGCL alleviates cadmium-inhibited fructooligosaccharides metabolism by modulating glutathione level in Allium cepa L. J Hazard Mater 2021;419:126255. [PMID: 34157465 DOI: 10.1016/j.jhazmat.2021.126255] [Reference Citation Analysis]
7 Leonardo B, Emanuela T, Letizia MM, Antonella M, Marco M, Fabrizio A, Beatrice BM, Adriana C. Cadmium affects cell niches maintenance in Arabidopsis thaliana post-embryonic shoot and root apical meristem by altering the expression of WUS/WOX homolog genes and cytokinin accumulation. Plant Physiol Biochem 2021;167:785-94. [PMID: 34530323 DOI: 10.1016/j.plaphy.2021.09.014] [Reference Citation Analysis]
8 Peco J, Campos J, Romero-puertas M, Olmedilla A, Higueras P, Sandalio L. Characterization of mechanisms involved in tolerance and accumulation of Cd in Biscutella auriculata L. Ecotoxicology and Environmental Safety 2020;201:110784. [DOI: 10.1016/j.ecoenv.2020.110784] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
9 García de la Torre VS, Coba de la Peña T, Pueyo JJ, Lucas MM. Cadmium-Tolerant and -Sensitive Cultivars Identified by Screening of Medicago truncatula Germplasm Display Contrasting Responses to Cadmium Stress. Front Plant Sci 2021;12:595001. [PMID: 33777061 DOI: 10.3389/fpls.2021.595001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Gu R, Lin H, Zhou Y, Song X, Xu S, Yue S, Zhang Y, Xu S, Zhang X. Programmed responses of different life-stages of the seagrass Ruppia sinensis to copper and cadmium exposure. Journal of Hazardous Materials 2021;403:123875. [DOI: 10.1016/j.jhazmat.2020.123875] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
11 Vladimirovich DA, Grigorievich DV, Sergeevna DN. The assessment of cadmium nitrate effect on morphological and cytogenetic indices of spring barley (Hordeum vulgare) seedlings. Braz J Bot 2021;44:43-56. [DOI: 10.1007/s40415-020-00679-4] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Shen C, Fu HL, Liao Q, Huang B, Fan X, Liu XY, Xin JL, Huang YY. Transcriptome analysis and physiological indicators reveal the role of sulfur in cadmium accumulation and transportation in water spinach (Ipomoea aquatica Forsk.). Ecotoxicol Environ Saf 2021;225:112787. [PMID: 34544020 DOI: 10.1016/j.ecoenv.2021.112787] [Reference Citation Analysis]
13 Nogueira ML, Carvalho MEA, Ferreira JMM, Bressanin LA, Piotto KDB, Piotto FA, Marques DN, Barbosa S, Azevedo RA. Cadmium-induced transgenerational effects on tomato plants: A gift from parents to progenies. Sci Total Environ 2021;789:147885. [PMID: 34323842 DOI: 10.1016/j.scitotenv.2021.147885] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ozyigit II, Arda L, Yalcin B, Yalcin IE, Ucar B, Hocaoglu-Ozyigit A. Lemna minor, a hyperaccumulator shows elevated levels of Cd accumulation and genomic template stability in binary application of Cd and Ni: a physiological and genetic approach. Int J Phytoremediation 2021;23:1255-69. [PMID: 33662215 DOI: 10.1080/15226514.2021.1892586] [Reference Citation Analysis]
15 Hayat K, Khan J, Khan A, Ullah S, Ali S, Salahuddin, Fu Y. Ameliorative Effects of Exogenous Proline on Photosynthetic Attributes, Nutrients Uptake, and Oxidative Stresses under Cadmium in Pigeon Pea (Cajanus cajan L.). Plants (Basel) 2021;10:796. [PMID: 33921552 DOI: 10.3390/plants10040796] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Li J, Chang Y, Al-Huqail AA, Ding Z, Al-Harbi MS, Ali EF, Abeed AHA, Rekaby SA, Eissa MA, Ghoneim AM, Tammam SA. Effect of Manure and Compost on the Phytostabilization Potential of Heavy Metals by the Halophytic Plant Wavy-Leaved Saltbush. Plants (Basel) 2021;10:2176. [PMID: 34685988 DOI: 10.3390/plants10102176] [Reference Citation Analysis]
17 Aprile A, De Bellis L. Editorial for Special Issue "Heavy Metals Accumulation, Toxicity, and Detoxification in Plants". Int J Mol Sci 2020;21:E4103. [PMID: 32526826 DOI: 10.3390/ijms21114103] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Zhang W, Yue S, Song J, Xun M, Han M, Yang H. MhNRAMP1 From Malus hupehensis Exacerbates Cell Death by Accelerating Cd Uptake in Tobacco and Apple Calli. Front Plant Sci 2020;11:957. [PMID: 32733509 DOI: 10.3389/fpls.2020.00957] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
19 Żabka A, Winnicki K, Polit JT, Wróblewski M, Maszewski J. Cadmium (II)-Induced Oxidative Stress Results in Replication Stress and Epigenetic Modifications in Root Meristem Cell Nuclei of Vicia faba. Cells 2021;10:640. [PMID: 33805688 DOI: 10.3390/cells10030640] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Fardus J, Hossain MS, Fujita M. Potential role of L-glutamic acid in mitigating cadmium toxicity in lentil (Lens culinaris Medik.) through modulating the antioxidant defence system and nutrient homeostasis. Not Bot Horti Agrobo 2021;49:12485. [DOI: 10.15835/nbha49412485] [Reference Citation Analysis]
21 Bari MA, El-Shehawi AM, Elseehy MM, Naheen NN, Rahman MM, Kabir AH. Molecular characterization and bioinformatics analysis of transporter genes associated with Cd-induced phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem 2021;167:438-48. [PMID: 34411783 DOI: 10.1016/j.plaphy.2021.08.024] [Reference Citation Analysis]
22 Huybrechts M, Hendrix S, Kyndt T, Demeestere K, Vandamme D, Cuypers A. Short-term effects of cadmium on leaf growth and nutrient transport in rice plants. Plant Sci 2021;313:111054. [PMID: 34763852 DOI: 10.1016/j.plantsci.2021.111054] [Reference Citation Analysis]
23 Ndlovu S, Pullabhotla RVSR, Ntuli NR. Response of Corchorus olitorius Leafy Vegetable to Cadmium in the Soil. Plants (Basel) 2020;9:E1200. [PMID: 32937806 DOI: 10.3390/plants9091200] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Behr M, Neutelings G, El Jaziri M, Baucher M. You Want it Sweeter: How Glycosylation Affects Plant Response to Oxidative Stress. Front Plant Sci 2020;11:571399. [PMID: 33042189 DOI: 10.3389/fpls.2020.571399] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Manara A, Fasani E, Molesini B, DalCorso G, Pennisi F, Pandolfini T, Furini A. The Tomato Metallocarboxypeptidase Inhibitor I, which Interacts with a Heavy Metal-Associated Isoprenylated Protein, Is Implicated in Plant Response to Cadmium. Molecules 2020;25:E700. [PMID: 32041288 DOI: 10.3390/molecules25030700] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
26 Huybrechts M, Hendrix S, Bertels J, Beemster GT, Vandamme D, Cuypers A. Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. Environmental and Experimental Botany 2020;177:104120. [DOI: 10.1016/j.envexpbot.2020.104120] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Finger-Teixeira A, Ishii-Iwamoto EL, Marchiosi R, Coelho ÉMP, Constantin RP, Dos Santos WD, Soares AR, Ferrarese-Filho O. Cadmium uncouples mitochondrial oxidative phosphorylation and induces oxidative cellular stress in soybean roots. Environ Sci Pollut Res Int 2021;28:67711-23. [PMID: 34263402 DOI: 10.1007/s11356-021-15368-2] [Reference Citation Analysis]
28 Danelli T, Sepulcri A, Masetti G, Colombo F, Sangiorgio S, Cassani E, Anelli S, Adani F, Pilu R. Arundo donax L. Biomass Production in a Polluted Area: Effects of Two Harvest Timings on Heavy Metals Uptake. Applied Sciences 2021;11:1147. [DOI: 10.3390/app11031147] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 12.0] [Reference Citation Analysis]
29 Hendrix S, Iven V, Eekhout T, Huybrechts M, Pecqueur I, Horemans N, Keunen E, De Veylder L, Vangronsveld J, Cuypers A. Suppressor of Gamma Response 1 Modulates the DNA Damage Response and Oxidative Stress Response in Leaves of Cadmium-Exposed Arabidopsis thaliana. Front Plant Sci 2020;11:366. [PMID: 32308663 DOI: 10.3389/fpls.2020.00366] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
30 Bertels J, Huybrechts M, Hendrix S, Bervoets L, Cuypers A, Beemster GTS. Cadmium inhibits cell cycle progression and specifically accumulates in the maize leaf meristem. J Exp Bot 2020;71:6418-28. [PMID: 32822498 DOI: 10.1093/jxb/eraa385] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
31 Pereira AS, Bortolin GS, Dorneles AOS, Meneghello GE, do Amarante L, Mauch CR. Silicon seed priming attenuates cadmium toxicity in lettuce seedlings. Environ Sci Pollut Res Int 2021;28:21101-9. [PMID: 33405115 DOI: 10.1007/s11356-020-12249-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Pagano L, Marmiroli M, Villani M, Magnani J, Rossi R, Zappettini A, White JC, Marmiroli N. Engineered Nanomaterial Exposure Affects Organelle Genetic Material Replication in Arabidopsis thaliana. ACS Nano 2022;16:2249-60. [PMID: 35048688 DOI: 10.1021/acsnano.1c08367] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Lai JL, Zhang-Xuan D, Xiao-Hui JI, Xue-Gang L. Absorption and interaction mechanisms of uranium & cadmium in purple sweet potato(Ipomoea batatas L.). J Hazard Mater 2020;400:123264. [PMID: 32947695 DOI: 10.1016/j.jhazmat.2020.123264] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
34 Ogunkunle CO, Gambari H, Agbaje F, Okoro HK, Asogwa NT, Vishwakarma V, Fatoba PO. Effect of Low-Dose Nano Titanium Dioxide Intervention on Cd Uptake and Stress Enzymes Activity in Cd-Stressed Cowpea [Vigna unguiculata (L.) Walp] Plants. Bull Environ Contam Toxicol 2020;104:619-26. [DOI: 10.1007/s00128-020-02824-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
35 Sabella E, Luvisi A, Genga A, De Bellis L, Aprile A. Molecular Responses to Cadmium Exposure in Two Contrasting Durum Wheat Genotypes. Int J Mol Sci 2021;22:7343. [PMID: 34298963 DOI: 10.3390/ijms22147343] [Reference Citation Analysis]
36 Mostofa MG, Rahman MM, Ansary MMU, Fujita M, Tran LP. Interactive Effects of Salicylic Acid and Nitric Oxide in Enhancing Rice Tolerance to Cadmium Stress. Int J Mol Sci 2019;20:E5798. [PMID: 31752185 DOI: 10.3390/ijms20225798] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]