BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Marampon F, Ciccarelli C, Zani BM. Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation. Int J Mol Sci 2019;20:E2530. [PMID: 31126017 DOI: 10.3390/ijms20102530] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Shi S, Zhao S, Tian X, Liu F, Lu X, Zang H, Li F, Xiang L, Li L, Jiang S. Molecular and metabolic mechanisms of bufalin against lung adenocarcinoma: New and comprehensive evidences from network pharmacology, metabolomics and molecular biology experiment. Comput Biol Med 2023;157:106777. [PMID: 36924737 DOI: 10.1016/j.compbiomed.2023.106777] [Reference Citation Analysis]
2 Lindell E, Zhong L, Zhang X. Quiescent Cancer Cells-A Potential Therapeutic Target to Overcome Tumor Resistance and Relapse. Int J Mol Sci 2023;24. [PMID: 36835173 DOI: 10.3390/ijms24043762] [Reference Citation Analysis]
3 Vaccaro S, Rossetti A, Porrazzo A, Camero S, Cassandri M, Pomella S, Tomaciello M, Macioce G, Pedini F, Barillari G, Marchese C, Rota R, Cenci G, Tombolini M, Newman RA, Yang P, Codenotti S, Fanzani A, Megiorni F, Festuccia C, Minniti G, Gravina GL, Vulcano F, Milazzo L, Marampon F. The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, sensitizes alveolar and embryonal rhabdomyosarcoma to radiotherapy in vitro and in vivo. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1071176] [Reference Citation Analysis]
4 Rajput M, Mishra D, Kumar K, Singh RP. Silibinin Radiosensitizes EGF Receptor-knockdown Prostate Cancer Cells by Attenuating DNA Repair Pathways. J Cancer Prev 2022;27:170-81. [PMID: 36258717 DOI: 10.15430/JCP.2022.27.3.170] [Reference Citation Analysis]
5 Zhang Y, Siraj MA, Chakraborty P, Tseng R, Ku L, Das S, Dey A, Dhar Dwivedi SK, Rao G, Zhang M, Yang D, Hossen MN, Ding W, Fung K, Bhattacharya R, Escobar-hoyos L, Mukherjee P. Activation of ERK by altered RNA splicing in cancer.. [DOI: 10.1101/2022.08.31.505957] [Reference Citation Analysis]
6 Jubaidi FF, Zainalabidin S, Taib IS, Abdul Hamid Z, Mohamad Anuar NN, Jalil J, Mohd Nor NA, Budin SB. The Role of PKC-MAPK Signalling Pathways in the Development of Hyperglycemia-Induced Cardiovascular Complications. IJMS 2022;23:8582. [DOI: 10.3390/ijms23158582] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Xue F, Wang T, Shi H, Feng H, Feng G, Wang R, Yao Y, Yuan H. CD73 facilitates invadopodia formation and boosts malignancy of head and neck squamous cell carcinoma via the MAPK signaling pathway. Cancer Sci 2022. [PMID: 35657703 DOI: 10.1111/cas.15452] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Pan X, Pei J, Wang A, Shuai W, Feng L, Bu F, Zhu Y, Zhang L, Wang G, Ouyang L. Development of small molecule extracellular signal-regulated kinases (ERKs) inhibitors for cancer therapy. Acta Pharm Sin B 2022;12:2171-92. [PMID: 35646548 DOI: 10.1016/j.apsb.2021.12.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Song Y, Bi Z, Liu Y, Qin F, Wei Y, Wei X. Targeting RAS–RAF–MEK–ERK signaling pathway in human cancer: Current status in clinical trials. Genes & Diseases 2022. [DOI: 10.1016/j.gendis.2022.05.006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Su CM, Lin SS, Wang HC, Hsu FT, Chung JG, Hsu LC. The inhibitory effect and mechanism of quetiapine on tumor progression in hepatocellular carcinoma in vivo. Environ Toxicol 2021. [PMID: 34626444 DOI: 10.1002/tox.23380] [Reference Citation Analysis]
11 Chen YS, Sun R, Chen WL, Yau YC, Hsu FT, Chung JG, Tsai CJ, Hsieh CL, Chiu YM, Chen JH. The In Vivo Radiosensitizing Effect of Magnolol on Tumor Growth of Hepatocellular Carcinoma. In Vivo 2020;34:1789-96. [PMID: 32606148 DOI: 10.21873/invivo.11973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
12 Waller V, Pruschy M. Combined Radiochemotherapy: Metalloproteinases Revisited. Front Oncol 2021;11:676583. [PMID: 34055644 DOI: 10.3389/fonc.2021.676583] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Paramanantham A, Jung EJ, Go SI, Jeong BK, Jung JM, Hong SC, Kim GS, Lee WS. Activated ERK Signaling Is One of the Major Hub Signals Related to the Acquisition of Radiotherapy-Resistant MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2021;22:4940. [PMID: 34066541 DOI: 10.3390/ijms22094940] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
14 Vargas-ibarra D, Velez-vasquez M, Bermudez-munoz M. Regulation of MAPK ERK1/2 Signaling by Phosphorylation: Implications in Physiological and Pathological Contexts. Post-Translational Modifications in Cellular Functions and Diseases [Working Title] 2021. [DOI: 10.5772/intechopen.97061] [Reference Citation Analysis]
15 Akil H, Quintana M, Raymond JH, Billoux T, Benboubker V, Besse S, Auzeloux P, Delmas V, Petit V, Larue L, D'Incan M, Degoul F, Rouanet J. Efficacy of Targeted Radionuclide Therapy Using [131I]ICF01012 in 3D Pigmented BRAF- and NRAS-Mutant Melanoma Models and In Vivo NRAS-Mutant Melanoma. Cancers (Basel) 2021;13:1421. [PMID: 33804655 DOI: 10.3390/cancers13061421] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Pathania S, Singh PK, Narang RK, Rawal RK. Identifying novel putative ERK1/2 inhibitors via hybrid scaffold hopping -FBDD approach. J Biomol Struct Dyn 2021;:1-16. [PMID: 33615999 DOI: 10.1080/07391102.2021.1889670] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Han X, Chen L, Hu Z, Chen L, Sun P, Wang Y, Liu Y. Identification of proteins related with pemetrexed resistance by iTRAQ and PRM-based comparative proteomic analysis and exploration of IGF2BP2 and FOLR1 functions in non-small cell lung cancer cells. J Proteomics 2021;237:104122. [PMID: 33561557 DOI: 10.1016/j.jprot.2021.104122] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
18 Li T, Yu Y, Shi H, Cao Y, Liu X, Hao Z, Ren Y, Qin G, Huang Y, Wang B. Magnesium in Combinatorial With Valproic Acid Suppressed the Proliferation and Migration of Human Bladder Cancer Cells. Front Oncol 2020;10:589112. [PMID: 33363019 DOI: 10.3389/fonc.2020.589112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
19 Duff A, Kavege L, Baquier J, Hu T. A PI3K inhibitor-induced growth inhibition of cancer cells is linked to MEK-ERK pathway. Anticancer Drugs 2021;32:517-25. [PMID: 33290316 DOI: 10.1097/CAD.0000000000001024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Zhu S, Wang H, Zhang Z, Ma M, Zheng Z, Xu X, Sun T. IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway. Mol Med Rep 2020;22:4837-47. [PMID: 33173998 DOI: 10.3892/mmr.2020.11578] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Ma Y, Zhan S, Lu H, Wang R, Xu Y, Zhang G, Cao L, Shi T, Zhang X, Chen W. B7-H3 regulates KIF15-activated ERK1/2 pathway and contributes to radioresistance in colorectal cancer. Cell Death Dis 2020;11:824. [PMID: 33011740 DOI: 10.1038/s41419-020-03041-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
22 Nath J, Paul R, Ghosh SK, Paul J, Singha B, Debnath N. Drug repurposing and relabeling for cancer therapy: Emerging benzimidazole antihelminthics with potent anticancer effects. Life Sciences 2020;258:118189. [DOI: 10.1016/j.lfs.2020.118189] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
23 Das M, Zhou X, Liu Y, Das A, Vincent BG, Li J, Liu R, Huang L. Tumor neoantigen heterogeneity impacts bystander immune inhibition of pancreatic cancer growth. Transl Oncol 2020;13:100856. [PMID: 32862105 DOI: 10.1016/j.tranon.2020.100856] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
24 Shin WS, Park MK, Lee YH, Kim KW, Lee H, Lee ST. The catalytically defective receptor protein tyrosine kinase EphA10 promotes tumorigenesis in pancreatic cancer cells. Cancer Sci 2020;111:3292-302. [PMID: 32644283 DOI: 10.1111/cas.14568] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
25 Das M, Zhou X, Liu Y, Das A, Vincent BG, Li J, Liu R, Huang L. Tumor neoantigen heterogeneity impacts bystander immune inhibition of pancreatic cancer growth.. [DOI: 10.1101/2020.05.07.083352] [Reference Citation Analysis]
26 Pathania S, Rawal RK. An update on chemical classes targeting ERK1/2 for the management of cancer. Future Med Chem 2020;12:593-611. [PMID: 32191540 DOI: 10.4155/fmc-2019-0339] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
27 Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C, Berindan-Neagoe I. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2019;11:E1618. [PMID: 31652660 DOI: 10.3390/cancers11101618] [Cited by in Crossref: 277] [Cited by in F6Publishing: 297] [Article Influence: 69.3] [Reference Citation Analysis]