BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ono H. Molecular Mechanisms of Hypothalamic Insulin Resistance. Int J Mol Sci 2019;20:E1317. [PMID: 30875909 DOI: 10.3390/ijms20061317] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Natrus LV, Osadchuk YS, Lisakovska OO, Labudzinskyi DO, Klys YG, Chaikovsky YB, Wang X. Effect of Propionic Acid on Diabetes-Induced Impairment of Unfolded Protein Response Signaling and Astrocyte/Microglia Crosstalk in Rat Ventromedial Nucleus of the Hypothalamus. Neural Plasticity 2022;2022:1-26. [DOI: 10.1155/2022/6404964] [Reference Citation Analysis]
2 Castorani V, Polidori N, Giannini C, Blasetti A, Chiarelli F. Insulin resistance and type 2 diabetes in children. Ann Pediatr Endocrinol Metab 2020;25:217-26. [PMID: 33401880 DOI: 10.6065/apem.2040090.045] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
3 Hao J, Han L, Zhang Y, Wang T. Docking Studies on Potential Mechanisms for Decreasing Insulin Resistance by the Tangzhiqing Herbal Formula. Evid Based Complement Alternat Med 2020;2020:1057648. [PMID: 33133211 DOI: 10.1155/2020/1057648] [Reference Citation Analysis]
4 Fuente-Martín E, Mellado-Gil JM, Cobo-Vuilleumier N, Martín-Montalvo A, Romero-Zerbo SY, Diaz Contreras I, Hmadcha A, Soria B, Martin Bermudo F, Reyes JC, Bermúdez-Silva FJ, Lorenzo PI, Gauthier BR. Dissecting the Brain/Islet Axis in Metabesity. Genes (Basel) 2019;10:E350. [PMID: 31072002 DOI: 10.3390/genes10050350] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
5 Purushothaman I, Zagon IS, Sassani JW, McLaughlin PJ. Ocular surface complications in diabetes: The interrelationship between insulin and enkephalin. Biochem Pharmacol 2021;192:114712. [PMID: 34324868 DOI: 10.1016/j.bcp.2021.114712] [Reference Citation Analysis]
6 Magnan C, Le Stunff H. Role of hypothalamic de novo ceramides synthesis in obesity and associated metabolic disorders. Mol Metab 2021;53:101298. [PMID: 34273578 DOI: 10.1016/j.molmet.2021.101298] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ladyman SR, Brooks VL. Central actions of insulin during pregnancy and lactation. J Neuroendocrinol 2021;33:e12946. [PMID: 33710714 DOI: 10.1111/jne.12946] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Dakic T, Lakic I, Zec M, Takic M, Stojiljkovic M, Jevdjovic T. Fructose-rich diet and walnut supplementation differently regulate rat hypothalamic and hippocampal glucose transporters expression. J Sci Food Agric 2021. [PMID: 33856052 DOI: 10.1002/jsfa.11252] [Reference Citation Analysis]
9 Henry SS, Ross RA, Rasgon N. Relevance of Sex-Specific Metabolic Phenotypes in Diagnosis and Treatment of Mood Disorders and PTSD. Psychiatric Annals 2022;52:20-5. [DOI: 10.3928/00485713-20211221-01] [Reference Citation Analysis]
10 Wang YN, Liu S, Jia T, Feng Y, Xu X, Zhang D. T Cell Protein Tyrosine Phosphatase in Glucose Metabolism. Front Cell Dev Biol 2021;9:682947. [PMID: 34268308 DOI: 10.3389/fcell.2021.682947] [Reference Citation Analysis]
11 Begum N, Manipriya K, Veeresh B. Role of high-fat diet on letrozole-induced polycystic ovarian syndrome in rats. Eur J Pharmacol 2022;917:174746. [PMID: 34998791 DOI: 10.1016/j.ejphar.2022.174746] [Reference Citation Analysis]
12 Krolick KN, Shi H. Estrogenic Action in Stress-Induced Neuroendocrine Regulation of Energy Homeostasis. Cells 2022;11:879. [DOI: 10.3390/cells11050879] [Reference Citation Analysis]
13 Edem EE, Nathaniel BU, Nebo KE, Obisesan AO, Olabiyi AA, Akinluyi ET, Ishola AO. Lactobacillus plantarum mitigates sexual-reproductive deficits by modulating insulin receptor expression in the hypothalamic-pituitary-testicular axis of hyperinsulinemic mice. Drug Metab Pers Ther 2021. [PMID: 34002580 DOI: 10.1515/dmpt-2021-1000195] [Reference Citation Analysis]
14 Dimitri P. Treatment of Acquired Hypothalamic Obesity: Now and the Future. Front Endocrinol 2022;13:846880. [DOI: 10.3389/fendo.2022.846880] [Reference Citation Analysis]
15 Garcia SM, Hirschberg PR, Sarkar P, Siegel DM, Teegala SB, Vail GM, Routh VH. Insulin actions on hypothalamic glucose-sensing neurones. J Neuroendocrinol 2021;33:e12937. [PMID: 33507001 DOI: 10.1111/jne.12937] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Saneyasu T, Ueno M, Nagata K, Kewan A, Honda K, Kamisoyama H. Central administration of insulin and refeeding lead to Akt and ERK phosphorylation in the chicken medulla. Neurosci Lett 2021;758:136008. [PMID: 34098027 DOI: 10.1016/j.neulet.2021.136008] [Reference Citation Analysis]
17 Yousefvand S, Hamidi F. Role of Lateral Hypothalamus Area in the Central Regulation of Feeding. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10391-4] [Reference Citation Analysis]
18 Pomytkin I, Pinelis V. Brain Insulin Resistance: Focus on Insulin Receptor-Mitochondria Interactions. Life (Basel) 2021;11:262. [PMID: 33810179 DOI: 10.3390/life11030262] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Díaz-Catalán D, Alcarraz-Vizán G, Castaño C, de Pablo S, Rodríguez-Comas J, Fernández-Pérez A, Vallejo M, Ramírez S, Claret M, Parrizas M, Novials A, Servitja JM. BACE2 suppression in mice aggravates the adverse metabolic consequences of an obesogenic diet. Mol Metab 2021;53:101251. [PMID: 34015524 DOI: 10.1016/j.molmet.2021.101251] [Reference Citation Analysis]
20 Bar-Tana J. Type 2 diabetes - unmet need, unresolved pathogenesis, mTORC1-centric paradigm. Rev Endocr Metab Disord 2020;21:613-29. [PMID: 32128655 DOI: 10.1007/s11154-020-09545-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
21 Lee J, Gong YX, Jeong H, Seo H, Xie DP, Sun HN, Kwon T. Pharmacological effects of Picrasma quassioides (D. Don) Benn for inflammation, cancer and neuroprotection (Review). Exp Ther Med 2021;22:1357. [PMID: 34659503 DOI: 10.3892/etm.2021.10792] [Reference Citation Analysis]
22 Filippov MA, Tatarnikova OG, Pozdnyakova NV, Vorobyov VV. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: a role of mitochondria targeted catalase and xanthophylls. Neural Regen Res 2021;16:223-33. [PMID: 32859768 DOI: 10.4103/1673-5374.290878] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
23 Buie JJ, Watson LS, Smith CJ, Sims-Robinson C. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis 2019;132:104580. [PMID: 31454547 DOI: 10.1016/j.nbd.2019.104580] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
24 Gao R, Fu Q, Jiang HM, Shen M, Zhao RL, Qian Y, He YQ, Xu KF, Xu XY, Chen H, Zhang Q, Yang T. Temporal metabolic and transcriptomic characteristics crossing islets and liver reveal dynamic pathophysiology in diet-induced diabetes. iScience 2021;24:102265. [PMID: 33817571 DOI: 10.1016/j.isci.2021.102265] [Reference Citation Analysis]
25 Cui X, Gruzdeva A, Kim H, Yapici N. Of flies, mice and neural control of food intake: lessons to learn from both models. Curr Opin Neurobiol 2022;73:102531. [PMID: 35390643 DOI: 10.1016/j.conb.2022.102531] [Reference Citation Analysis]