BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Aspenström P. Activated Rho GTPases in Cancer-The Beginning of a New Paradigm. Int J Mol Sci 2018;19:E3949. [PMID: 30544828 DOI: 10.3390/ijms19123949] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Chen H, Xia R, Jiang L, Zhou Y, Xu H, Peng W, Yao C, Zhou G, Zhang Y, Xia H, Wang Y. Overexpression of RhoV Promotes the Progression and EGFR-TKI Resistance of Lung Adenocarcinoma. Front Oncol 2021;11:619013. [PMID: 33767988 DOI: 10.3389/fonc.2021.619013] [Reference Citation Analysis]
2 Lin M, Gao M, Cavnar MJ, Kim J. Utilizing gastric cancer organoids to assess tumor biology and personalize medicine. World J Gastrointest Oncol 2019; 11(7): 509-517 [PMID: 31367270 DOI: 10.4251/wjgo.v11.i7.509] [Cited by in CrossRef: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
3 Hühn J, Musielak M, Schmitz HP, Heinisch JJ. Fungal homologues of human Rac1 as emerging players in signal transduction and morphogenesis. Int Microbiol 2020;23:43-53. [PMID: 31020478 DOI: 10.1007/s10123-019-00077-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Arrazola Sastre A, Luque Montoro M, Gálvez-Martín P, Lacerda HM, Lucia AM, Llavero F, Zugaza JL. Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int J Mol Sci 2020;21:E6312. [PMID: 32878220 DOI: 10.3390/ijms21176312] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
5 Zheng CW, Zeng RJ, Xu LY, Li EM. Rho GTPases: Promising candidates for overcoming chemotherapeutic resistance. Cancer Lett 2020;475:65-78. [PMID: 31981606 DOI: 10.1016/j.canlet.2020.01.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Venditti M, Arcaniolo D, De Sio M, Minucci S. Preliminary Investigation on the Involvement of Cytoskeleton-Related Proteins, DAAM1 and PREP, in Human Testicular Disorders. Int J Mol Sci 2021;22:8094. [PMID: 34360857 DOI: 10.3390/ijms22158094] [Reference Citation Analysis]
7 Wang J, Yuan L, Xu X, Zhang Z, Ma Y, Hong L, Ma J. Rho-GEF Trio regulates osteosarcoma progression and osteogenic differentiation through Rac1 and RhoA. Cell Death Dis 2021;12:1148. [PMID: 34893584 DOI: 10.1038/s41419-021-04448-3] [Reference Citation Analysis]
8 Olayioye MA, Noll B, Hausser A. Spatiotemporal Control of Intracellular Membrane Trafficking by Rho GTPases. Cells 2019;8:E1478. [PMID: 31766364 DOI: 10.3390/cells8121478] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
9 Satoh T. Diverse Physiological Functions and Regulatory Mechanisms for Signal-Transducing Small GTPases. Int J Mol Sci 2020;21:E7291. [PMID: 33023216 DOI: 10.3390/ijms21197291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Saliani M, Mirzaiebadizi A, Mosaddeghzadeh N, Ahmadian MR. RHO GTPase-Related Long Noncoding RNAs in Human Cancers. Cancers (Basel) 2021;13:5386. [PMID: 34771549 DOI: 10.3390/cancers13215386] [Reference Citation Analysis]
11 Xie Y, Wang X, Wu X, Tian L, Zhou J, Li X, Wang B. Lysophosphatidic acid receptor 4 regulates osteogenic and adipogenic differentiation of progenitor cells via inactivation of RhoA/ROCK1/β-catenin signaling: LPAR4 regulates osteoblast and adipocyte. Stem Cells 2020;38:451-63. [DOI: 10.1002/stem.3128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hudson LG, Cook LS, Grimes MM, Muller CY, Adams SF, Wandinger-Ness A. Dual Actions of Ketorolac in Metastatic Ovarian Cancer. Cancers (Basel) 2019;11:E1049. [PMID: 31344967 DOI: 10.3390/cancers11081049] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
13 Yadav S, Barton M, Nguyen NT. Stretching Induces Overexpression of RhoA and Rac1 GTPases in Breast Cancer Cells. Adv Biosyst 2020;4:e1900222. [PMID: 32293133 DOI: 10.1002/adbi.201900222] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
14 Xu S, Zhang T, Cao Z, Zhong W, Zhang C, Li H, Song J. Integrin-α9β1 as a Novel Therapeutic Target for Refractory Diseases: Recent Progress and Insights. Front Immunol 2021;12:638400. [PMID: 33790909 DOI: 10.3389/fimmu.2021.638400] [Reference Citation Analysis]
15 Ferragut Cardoso AP, Banerjee M, Al-eryani L, Sayed M, Wilkey DW, Merchant ML, Park JW, States JC. Temporal Modulation of Differential Alternative Splicing in HaCaT Human Keratinocyte Cell Line Chronically Exposed to Arsenic for up to 28 Wk. Environ Health Perspect 2022;130:017011. [DOI: 10.1289/ehp9676] [Reference Citation Analysis]
16 Humphries BA, Wang Z, Yang C. MicroRNA Regulation of the Small Rho GTPase Regulators-Complexities and Opportunities in Targeting Cancer Metastasis. Cancers (Basel) 2020;12:E1092. [PMID: 32353968 DOI: 10.3390/cancers12051092] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
17 Sauzeau V, Beignet J, Vergoten G, Bailly C. Overexpressed or hyperactivated Rac1 as a target to treat hepatocellular carcinoma. Pharmacol Res 2022;:106220. [PMID: 35405309 DOI: 10.1016/j.phrs.2022.106220] [Reference Citation Analysis]
18 Rivier P, Mubalama M, Destaing O. Small GTPases all over invadosomes. Small GTPases 2021;12:429-39. [PMID: 33487105 DOI: 10.1080/21541248.2021.1877081] [Reference Citation Analysis]
19 Haspel N, Jang H, Nussinov R. Active and Inactive Cdc42 Differ in Their Insert Region Conformational Dynamics. Biophys J 2021;120:306-18. [PMID: 33347888 DOI: 10.1016/j.bpj.2020.12.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Panagopoulos I, Gorunova L, Andersen K, Lobmaier I, Heim S. Several Fusion Genes Identified in a Spermatic Cord Leiomyoma With Rearrangements of Chromosome Arms 3p and 21q. Cancer Genomics Proteomics 2021;18:531-42. [PMID: 34183386 DOI: 10.21873/cgp.20278] [Reference Citation Analysis]
21 Ahmad Mokhtar AM, Hashim IF, Mohd Zaini Makhtar M, Salikin NH, Amin-Nordin S. The Role of RhoH in TCR Signalling and Its Involvement in Diseases. Cells 2021;10:950. [PMID: 33923951 DOI: 10.3390/cells10040950] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Navarro-Lérida I, Sánchez-Álvarez M, Del Pozo MÁ. Post-Translational Modification and Subcellular Compartmentalization: Emerging Concepts on the Regulation and Physiopathological Relevance of RhoGTPases. Cells 2021;10:1990. [PMID: 34440759 DOI: 10.3390/cells10081990] [Reference Citation Analysis]
23 Zong W, Feng W, Jiang Y, Cao Y, Ke Y, Shi X, Ju S, Cong H, Wang X, Cui M, Jing R. LncRNA CTC-497E21.4 promotes the progression of gastric cancer via modulating miR-22/NET1 axis through RhoA signaling pathway. Gastric Cancer 2020;23:228-40. [PMID: 31451992 DOI: 10.1007/s10120-019-00998-w] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
24 Jung H, Yoon SR, Lim J, Cho HJ, Lee HG. Dysregulation of Rho GTPases in Human Cancers. Cancers (Basel) 2020;12:E1179. [PMID: 32392742 DOI: 10.3390/cancers12051179] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
25 Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020;8:201. [PMID: 32322580 DOI: 10.3389/fcell.2020.00201] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
26 He QL, Qin SY, Tao L, Ning HJ, Jiang HX. Prognostic value and prospective molecular mechanism of miR-100-5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncol Lett 2019;18:6126-42. [PMID: 31788087 DOI: 10.3892/ol.2019.10962] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
27 Ye Q, Zhao S, Zhang Y, Su YM, Chen M, Zhao J, Jia GZ, Han BM, Jiang JT. Activation of the RhoA/ROCK pathway contributes to renal fibrosis in offspring rats induced by maternal exposure to di-n-butyl phthalate. Toxicology 2020;443:152573. [PMID: 32860865 DOI: 10.1016/j.tox.2020.152573] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Clayton NS, Ridley AJ. Targeting Rho GTPase Signaling Networks in Cancer. Front Cell Dev Biol 2020;8:222. [PMID: 32309283 DOI: 10.3389/fcell.2020.00222] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 15.5] [Reference Citation Analysis]
29 Voena C, Chiarle R. RHO Family GTPases in the Biology of Lymphoma. Cells 2019;8:E646. [PMID: 31248017 DOI: 10.3390/cells8070646] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
30 Kukimoto-Niino M, Ihara K, Murayama K, Shirouzu M. Structural insights into the small GTPase specificity of the DOCK guanine nucleotide exchange factors. Curr Opin Struct Biol 2021;71:249-58. [PMID: 34507037 DOI: 10.1016/j.sbi.2021.08.001] [Reference Citation Analysis]
31 Brito C, Barral DC, Pojo M. Subversion of Ras Small GTPases in Cutaneous Melanoma Aggressiveness. Front Cell Dev Biol 2020;8:575223. [PMID: 33072757 DOI: 10.3389/fcell.2020.575223] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Pereira De Carvalho B, Chern YJ, He J, Chan CH. The ubiquitin ligase RNF8 regulates Rho GTPases and promotes cytoskeletal changes and motility in triple-negative breast cancer cells. FEBS Lett 2021;595:241-52. [PMID: 33205415 DOI: 10.1002/1873-3468.13999] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Génier S, Létourneau D, Gauthier E, Picard S, Boisvert M, Parent JL, Lavigne P. In-depth NMR characterization of Rab4a structure, nucleotide exchange and hydrolysis kinetics reveals an atypical GTPase profile. J Struct Biol 2020;212:107582. [PMID: 32707235 DOI: 10.1016/j.jsb.2020.107582] [Reference Citation Analysis]
34 Esposito D, Pant I, Shen Y, Qiao RF, Yang X, Bai Y, Jin J, Poulikakos PI, Aaronson SA. ROCK1 mechano-signaling dependency of human malignancies driven by TEAD/YAP activation. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-28319-3] [Reference Citation Analysis]
35 Banerjee M, Ferragut Cardoso A, Al-Eryani L, Pan J, Kalbfleisch TS, Srivastava S, Rai SN, States JC. Dynamic alteration in miRNA and mRNA expression profiles at different stages of chronic arsenic exposure-induced carcinogenesis in a human cell culture model of skin cancer. Arch Toxicol 2021;95:2351-65. [PMID: 34032870 DOI: 10.1007/s00204-021-03084-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Liu G, Li J, Zhang CY, Huang DY, Xu JW. ARHGAP20 Expression Inhibited HCC Progression by Regulating the PI3K-AKT Signaling Pathway. J Hepatocell Carcinoma 2021;8:271-84. [PMID: 33907697 DOI: 10.2147/JHC.S298554] [Reference Citation Analysis]
37 Alonso-Gordoa T, García-Bermejo ML, Grande E, Garrido P, Carrato A, Molina-Cerrillo J. Targeting Tyrosine kinases in Renal Cell Carcinoma: "New Bullets against Old Guys". Int J Mol Sci 2019;20:E1901. [PMID: 30999623 DOI: 10.3390/ijms20081901] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
38 Ebrahimi N, Kharazmi K, Ghanaatian M, Miraghel SA, Amiri Y, Seyedebrahimi SS, Mobarak H, Yazdani E, Parkhideh S, Hamblin MR, Aref AR. Role of the Wnt and GTPase pathways in breast cancer tumorigenesis and treatment. Cytokine & Growth Factor Reviews 2022. [DOI: 10.1016/j.cytogfr.2022.05.001] [Reference Citation Analysis]
39 Sang W, Zhang Z, Dai Y, Chen X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev 2019;48:3771-810. [DOI: 10.1039/c8cs00896e] [Cited by in Crossref: 126] [Cited by in F6Publishing: 30] [Article Influence: 42.0] [Reference Citation Analysis]
40 Weidle UH, AuslÄnder S, Brinkmann U. Micro RNAs Promoting Growth and Metastasis in Preclinical In Vivo Models of Subcutaneous Melanoma. Cancer Genomics Proteomics 2020;17:651-67. [PMID: 33099468 DOI: 10.21873/cgp.20221] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]