BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hsu CN, Lu PC, Lo MH, Lin IC, Chang-Chien GP, Lin S, Tain YL. Gut Microbiota-Dependent Trimethylamine N-Oxide Pathway Associated with Cardiovascular Risk in Children with Early-Stage Chronic Kidney Disease. Int J Mol Sci 2018;19:E3699. [PMID: 30469463 DOI: 10.3390/ijms19123699] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Andraos S, Jones B, Lange K, Clifford SA, Thorstensen EB, Kerr JA, Wake M, Saffery R, Burgner DP, O'Sullivan JM. Trimethylamine N-oxide (TMAO) Is not Associated with Cardiometabolic Phenotypes and Inflammatory Markers in Children and Adults. Curr Dev Nutr 2021;5:nzaa179. [PMID: 33501405 DOI: 10.1093/cdn/nzaa179] [Reference Citation Analysis]
2 Wehedy E, Shatat IF, Al Khodor S. The Human Microbiome in Chronic Kidney Disease: A Double-Edged Sword. Front Med 2022;8:790783. [DOI: 10.3389/fmed.2021.790783] [Reference Citation Analysis]
3 Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine-N-oxide. J Proteome Res 2022. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Reference Citation Analysis]
4 Hsu C, Tain Y. Chronic Kidney Disease and Gut Microbiota: What Is Their Connection in Early Life? IJMS 2022;23:3954. [DOI: 10.3390/ijms23073954] [Reference Citation Analysis]
5 Krüger-Genge A, Jung F, Hufert F, Jung EM, Küpper JH, Storsberg J. Effects of gut microbial metabolite trimethylamine N-oxide (TMAO) on platelets and endothelial cells. Clin Hemorheol Microcirc 2020;76:309-16. [PMID: 32925010 DOI: 10.3233/CH-209206] [Reference Citation Analysis]
6 Hsu CN, Chang-Chien GP, Lin S, Hou CY, Lu PC, Tain YL. Association of Trimethylamine, Trimethylamine N-oxide, and Dimethylamine with Cardiovascular Risk in Children with Chronic Kidney Disease. J Clin Med 2020;9:E336. [PMID: 31991725 DOI: 10.3390/jcm9020336] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
7 Hsu CN, Hou CY, Chan JYH, Lee CT, Tain YL. Hypertension Programmed by Perinatal High-Fat Diet: Effect of Maternal Gut Microbiota-Targeted Therapy. Nutrients 2019;11:E2908. [PMID: 31810197 DOI: 10.3390/nu11122908] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
8 Hsu CN, Lu PC, Hou CY, Tain YL. Blood Pressure Abnormalities Associated with Gut Microbiota-Derived Short Chain Fatty Acids in Children with Congenital Anomalies of the Kidney and Urinary Tract. J Clin Med 2019;8:E1090. [PMID: 31344888 DOI: 10.3390/jcm8081090] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
9 Zhao Y, Wang Z. Gut microbiome and cardiovascular disease. Curr Opin Cardiol 2020;35:207-18. [PMID: 32068612 DOI: 10.1097/HCO.0000000000000720] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
10 Pongking T, Haonon O, Dangtakot R, Onsurathum S, Jusakul A, Intuyod K, Sangka A, Anutrakulchai S, Cha'on U, Pinlaor S, Pinlaor P. A combination of monosodium glutamate and high-fat and high-fructose diets increases the risk of kidney injury, gut dysbiosis and host-microbial co-metabolism. PLoS One 2020;15:e0231237. [PMID: 32267892 DOI: 10.1371/journal.pone.0231237] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Micó-Carnero M, Rojano-Alfonso C, Álvarez-Mercado AI, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery. Int J Mol Sci 2020;22:E44. [PMID: 33375200 DOI: 10.3390/ijms22010044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 Miglinas M, Cesniene U, Janusaite MM, Vinikovas A. Cerebrovascular Disease and Cognition in Chronic Kidney Disease Patients. Front Cardiovasc Med 2020;7:96. [PMID: 32582768 DOI: 10.3389/fcvm.2020.00096] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
13 Andraos S, Lange K, Clifford SA, Jones B, Thorstensen EB, Kerr JA, Wake M, Saffery R, Burgner DP, O'Sullivan JM. Plasma Trimethylamine N-Oxide and Its Precursors: Population Epidemiology, Parent-Child Concordance, and Associations with Reported Dietary Intake in 11- to 12-Year-Old Children and Their Parents. Curr Dev Nutr 2020;4:nzaa103. [PMID: 32666035 DOI: 10.1093/cdn/nzaa103] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
14 Papandreou C, Moré M, Bellamine A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect? Nutrients 2020;12:E1330. [PMID: 32392758 DOI: 10.3390/nu12051330] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
15 Thøgersen R, Rasmussen MK, Sundekilde UK, Goethals SA, Van Hecke T, Vossen E, De Smet S, Bertram HC. Background Diet Influences TMAO Concentrations Associated with Red Meat Intake without Influencing Apparent Hepatic TMAO-Related Activity in a Porcine Model. Metabolites 2020;10:E57. [PMID: 32041174 DOI: 10.3390/metabo10020057] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
16 Liss MA, Leach RJ, Rourke E, Sherrill A, Johnson-Pais T, Lai Z, Basler J, White JR, Patterson JE. Microbiome diversity in carriers of fluoroquinolone resistant Escherichia coli. Investig Clin Urol 2019;60:75-83. [PMID: 30838339 DOI: 10.4111/icu.2019.60.2.75] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]