BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hiller T, Berg J, Elomaa L, Röhrs V, Ullah I, Schaar K, Dietrich AC, Al-Zeer MA, Kurtz A, Hocke AC, Hippenstiel S, Fechner H, Weinhart M, Kurreck J. Generation of a 3D Liver Model Comprising Human Extracellular Matrix in an Alginate/Gelatin-Based Bioink by Extrusion Bioprinting for Infection and Transduction Studies. Int J Mol Sci 2018;19:E3129. [PMID: 30321994 DOI: 10.3390/ijms19103129] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Shie MY, Lee JJ, Ho CC, Yen SY, Ng HY, Chen YW. Effects of Gelatin Methacrylate Bio-ink Concentration on Mechano-Physical Properties and Human Dermal Fibroblast Behavior. Polymers (Basel) 2020;12:E1930. [PMID: 32859028 DOI: 10.3390/polym12091930] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
2 Taymour R, Kilian D, Ahlfeld T, Gelinsky M, Lode A. 3D bioprinting of hepatocytes: core-shell structured co-cultures with fibroblasts for enhanced functionality. Sci Rep 2021;11:5130. [PMID: 33664366 DOI: 10.1038/s41598-021-84384-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
3 Rawal P, Tripathi DM, Ramakrishna S, Kaur S. Prospects for 3D bioprinting of organoids. Bio-des Manuf 2021;4:627-40. [DOI: 10.1007/s42242-020-00124-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
4 Kang B, Park Y, Hwang DG, Kim D, Yong U, Lim KS, Jang J. Facile Bioprinting Process for Fabricating Size‐Controllable Functional Microtissues Using Light‐Activated Decellularized Extracellular Matrix‐Based Bioinks. Adv Materials Technologies 2022;7:2100947. [DOI: 10.1002/admt.202100947] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Tan CT, Liang K, Ngo ZH, Dube CT, Lim CY. Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers. Biomedicines 2020;8:E441. [PMID: 33096771 DOI: 10.3390/biomedicines8100441] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
6 Zhang Y, Zhou D, Chen J, Zhang X, Li X, Zhao W, Xu T. Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Mar Drugs 2019;17:E555. [PMID: 31569366 DOI: 10.3390/md17100555] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
7 Zieliński PS, Gudeti PKR, Rikmanspoel T, Włodarczyk-biegun MK. 3D printing of bio-instructive materials: Toward directing the cell. Bioactive Materials 2023;19:292-327. [DOI: 10.1016/j.bioactmat.2022.04.008] [Reference Citation Analysis]
8 Mahajan N, Yoo JJ, Atala A. Bioink materials for translational applications. MRS Bulletin. [DOI: 10.1557/s43577-022-00268-8] [Reference Citation Analysis]
9 Pedroza-González SC, Rodriguez-Salvador M, Pérez-Benítez BE, Alvarez MM, Santiago GT. Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress. Int J Bioprint 2021;7:333. [PMID: 34007938 DOI: 10.18063/ijb.v7i2.337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Freeman S, Ramos R, Alexis Chando P, Zhou L, Reeser K, Jin S, Soman P, Ye K. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Acta Biomater 2019;95:152-64. [PMID: 31271883 DOI: 10.1016/j.actbio.2019.06.052] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
11 Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 2019;11:042001. [PMID: 31315105 DOI: 10.1088/1758-5090/ab331e] [Cited by in Crossref: 98] [Cited by in F6Publishing: 73] [Article Influence: 32.7] [Reference Citation Analysis]
12 Cuvellier M, Ezan F, Oliveira H, Rose S, Fricain JC, Langouët S, Legagneux V, Baffet G. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials 2021;269:120611. [PMID: 33385685 DOI: 10.1016/j.biomaterials.2020.120611] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Chakraborty J, Banerjee I, Vaishya R, Ghosh S. Bioengineered in Vitro Tissue Models to Study SARS-CoV-2 Pathogenesis and Therapeutic Validation.ACS Biomater Sci Eng. 2020;6:6540. [PMID: 33320635 DOI: 10.1021/acsbiomaterials.0c01226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
14 Carvalho V, Gonçalves I, Lage T, Rodrigues RO, Minas G, Teixeira SFCF, Moita AS, Hori T, Kaji H, Lima RA. 3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review. Sensors (Basel) 2021;21:3304. [PMID: 34068811 DOI: 10.3390/s21093304] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Ansari T, Southgate A, Obiri-Yeboa I, Jones LG, Greco K, Olayanju A, Mbundi L, Somasundaram M, Davidson B, Sibbons PD. Development and Characterization of a Porcine Liver Scaffold. Stem Cells Dev 2020;29:314-26. [PMID: 31854227 DOI: 10.1089/scd.2019.0069] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
16 Lee K, Cha C. Advanced Polymer-Based Bioink Technology for Printing Soft Biomaterials. Macromol Res 2020;28:689-702. [DOI: 10.1007/s13233-020-8134-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Agarwal T, Banerjee D, Konwarh R, Esworthy T, Kumari J, Onesto V, Das P, Lee BH, Wagener FADTG, Makvandi P, Mattoli V, Ghosh SK, Maiti TK, Zhang LG, Ozbolat IT. Recent advances in bioprinting technologies for engineering hepatic tissue. Mater Sci Eng C Mater Biol Appl 2021;123:112013. [PMID: 33812632 DOI: 10.1016/j.msec.2021.112013] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Abdollahiyan P, Oroojalian F, Mokhtarzadeh A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. Journal of Controlled Release 2021;332:460-92. [DOI: 10.1016/j.jconrel.2021.02.036] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
19 Chen L, Yan D, Wu N, Zhang W, Yan C, Yao Q, Zouboulis CC, Sun H, Fu Y. 3D-Printed Poly-Caprolactone Scaffolds Modified With Biomimetic Extracellular Matrices for Tarsal Plate Tissue Engineering. Front Bioeng Biotechnol 2020;8:219. [PMID: 32269990 DOI: 10.3389/fbioe.2020.00219] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022;74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Reference Citation Analysis]
21 Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives. Arch Toxicol 2022. [PMID: 35006284 DOI: 10.1007/s00204-021-03212-y] [Reference Citation Analysis]
22 Mao Q, Wang Y, Li Y, Juengpanich S, Li W, Chen M, Yin J, Fu J, Cai X. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Materials Science and Engineering: C 2020;109:110625. [DOI: 10.1016/j.msec.2020.110625] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
23 Bouwmeester MC, Bernal PN, Oosterhoff LA, van Wolferen ME, Lehmann V, Vermaas M, Buchholz MB, Peiffer QC, Malda J, van der Laan LJW, Kramer NI, Schneeberger K, Levato R, Spee B. Bioprinting of Human Liver-Derived Epithelial Organoids for Toxicity Studies. Macromol Biosci 2021;:e2100327. [PMID: 34559943 DOI: 10.1002/mabi.202100327] [Reference Citation Analysis]
24 Saygili E, Dogan-gurbuz AA, Yesil-celiktas O, Draz MS. 3D bioprinting: A powerful tool to leverage tissue engineering and microbial systems. Bioprinting 2020;18:e00071. [DOI: 10.1016/j.bprint.2019.e00071] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
25 Sarkar J, Kamble SC, Kashikar NC. Polymeric Bioinks for 3D Hepatic Printing. Chemistry 2021;3:164-81. [DOI: 10.3390/chemistry3010014] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Benwood C, Chrenek J, Kirsch RL, Masri NZ, Richards H, Teetzen K, Willerth SM. Natural Biomaterials and Their Use as Bioinks for Printing Tissues. Bioengineering (Basel) 2021;8:27. [PMID: 33672626 DOI: 10.3390/bioengineering8020027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
27 Berg J, Weber Z, Fechler-Bitteti M, Hocke AC, Hippenstiel S, Elomaa L, Weinhart M, Kurreck J. Bioprinted Multi-Cell Type Lung Model for the Study of Viral Inhibitors. Viruses 2021;13:1590. [PMID: 34452455 DOI: 10.3390/v13081590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Kabirian F, Mozafari M. Decellularized ECM-derived bioinks: Prospects for the future. Methods 2020;171:108-18. [PMID: 31051254 DOI: 10.1016/j.ymeth.2019.04.019] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 13.0] [Reference Citation Analysis]
29 Yilmaz B, Tahmasebifar A, Baran ET. Bioprinting Technologies in Tissue Engineering. In: Silva AC, Moreira JN, Lobo JMS, Almeida H, editors. Current Applications of Pharmaceutical Biotechnology. Cham: Springer International Publishing; 2020. pp. 279-319. [DOI: 10.1007/10_2019_108] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
30 Kryou C, Leva V, Chatzipetrou M, Zergioti I. Bioprinting for Liver Transplantation. Bioengineering (Basel) 2019;6:E95. [PMID: 31658719 DOI: 10.3390/bioengineering6040095] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
31 Brevini T, Tysoe OC, Sampaziotis F. Tissue engineering of the biliary tract and modelling of cholestatic disorders. Journal of Hepatology 2020;73:918-32. [DOI: 10.1016/j.jhep.2020.05.049] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
32 Cho WW, Kim BS, Ahn M, Ryu YH, Ha DH, Kong JS, Rhie JW, Cho DW. Flexible Adipose-Vascular Tissue Assembly Using Combinational 3D Printing for Volume-Stable Soft Tissue Reconstruction. Adv Healthc Mater 2021;10:e2001693. [PMID: 33236508 DOI: 10.1002/adhm.202001693] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Mahendiran B, Muthusamy S, Sampath S, Jaisankar SN, Popat KC, Selvakumar R, Krishnakumar GS. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. Int J Biol Macromol 2021;183:564-88. [PMID: 33933542 DOI: 10.1016/j.ijbiomac.2021.04.179] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Gori M, Giannitelli SM, Torre M, Mozetic P, Abbruzzese F, Trombetta M, Traversa E, Moroni L, Rainer A. Biofabrication of Hepatic Constructs by 3D Bioprinting of a Cell‐Laden Thermogel: An Effective Tool to Assess Drug‐Induced Hepatotoxic Response. Adv Healthcare Mater 2020;9:2001163. [DOI: 10.1002/adhm.202001163] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
35 Lawko N, Plaskasovitis C, Stokes C, Abelseth L, Fraser I, Sharma R, Kirsch R, Hasan M, Abelseth E, Willerth SM. 3D Tissue Models as an Effective Tool for Studying Viruses and Vaccine Development. Front Mater 2021;8:631373. [DOI: 10.3389/fmats.2021.631373] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
36 Chyzy A, Plonska-Brzezinska ME. Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules 2020;25:E5795. [PMID: 33302592 DOI: 10.3390/molecules25245795] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
37 Lim KS, Galarraga JH, Cui X, Lindberg GCJ, Burdick JA, Woodfield TBF. Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chem Rev 2020;120:10662-94. [DOI: 10.1021/acs.chemrev.9b00812] [Cited by in Crossref: 58] [Cited by in F6Publishing: 41] [Article Influence: 29.0] [Reference Citation Analysis]
38 Choi JY, Mahadik B, Fisher JP. 3D printing technologies for in vitro vaccine testing platforms and vaccine delivery systems against infectious diseases. Essays Biochem 2021;65:519-31. [PMID: 34342360 DOI: 10.1042/EBC20200105] [Reference Citation Analysis]
39 Choi YJ, Park H, Ha DH, Yun HS, Yi HG, Lee H. 3D Bioprinting of In Vitro Models Using Hydrogel-Based Bioinks. Polymers (Basel) 2021;13:366. [PMID: 33498852 DOI: 10.3390/polym13030366] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Wu YA, Chiu YC, Lin YH, Ho CC, Shie MY, Chen YW. 3D-Printed Bioactive Calcium Silicate/Poly-ε-Caprolactone Bioscaffolds Modified with Biomimetic Extracellular Matrices for Bone Regeneration. Int J Mol Sci 2019;20:E942. [PMID: 30795573 DOI: 10.3390/ijms20040942] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
41 de Melo BAG, Benincasa JC, Cruz EM, Maricato JT, Porcionatto MA. 3D culture models to study SARS-CoV-2 infectivity and antiviral candidates: From spheroids to bioprinting. Biomed J 2021;44:31-42. [PMID: 33602633 DOI: 10.1016/j.bj.2020.11.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
42 Zimmerling A, Chen X. Bioprinting for combating infectious diseases. Bioprinting 2020;20:e00104. [PMID: 33015403 DOI: 10.1016/j.bprint.2020.e00104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Schmidt K, Berg J, Roehrs V, Kurreck J, Al-Zeer MA. 3D-bioprinted HepaRG cultures as a model for testing long term aflatoxin B1 toxicity in vitro. Toxicol Rep 2020;7:1578-87. [PMID: 33304827 DOI: 10.1016/j.toxrep.2020.11.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
44 Porzionato A, Stocco E, Barbon S, Grandi F, Macchi V, De Caro R. Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int J Mol Sci. 2018;19. [PMID: 30567407 DOI: 10.3390/ijms19124117] [Cited by in Crossref: 93] [Cited by in F6Publishing: 88] [Article Influence: 23.3] [Reference Citation Analysis]
45 Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. Materials (Basel) 2021;14:858. [PMID: 33579053 DOI: 10.3390/ma14040858] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
46 Martínez-Ruiz EB, Cooper M, Al-Zeer MA, Kurreck J, Adrian L, Szewzyk U. Manganese-oxidizing bacteria form multiple cylindrospermopsin transformation products with reduced human liver cell toxicity. Sci Total Environ 2020;729:138924. [PMID: 32361450 DOI: 10.1016/j.scitotenv.2020.138924] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Kim D, Kim M, Lee J, Jang J. Review on Multicomponent Hydrogel Bioinks Based on Natural Biomaterials for Bioprinting 3D Liver Tissues. Front Bioeng Biotechnol 2022;10:764682. [PMID: 35237569 DOI: 10.3389/fbioe.2022.764682] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B 2021;9:5385-413. [PMID: 34124724 DOI: 10.1039/d1tb00172h] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Kwon DY, Park JY, Lee BY, Kim MS. Comparison of Scaffolds Fabricated via 3D Printing and Salt Leaching: In Vivo Imaging, Biodegradation, and Inflammation. Polymers (Basel) 2020;12:E2210. [PMID: 32993178 DOI: 10.3390/polym12102210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
50 Yang H, Sun L, Pang Y, Hu D, Xu H, Mao S, Peng W, Wang Y, Xu Y, Zheng YC, Du S, Zhao H, Chi T, Lu X, Sang X, Zhong S, Wang X, Zhang H, Huang P, Sun W, Mao Y. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut 2021;70:567-74. [PMID: 32434830 DOI: 10.1136/gutjnl-2019-319960] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
51 Lan X, Ma Z, Szojka ARA, Kunze M, Mulet-Sierra A, Vyhlidal MJ, Boluk Y, Adesida AB. TEMPO-Oxidized Cellulose Nanofiber-Alginate Hydrogel as a Bioink for Human Meniscus Tissue Engineering. Front Bioeng Biotechnol 2021;9:766399. [PMID: 34805119 DOI: 10.3389/fbioe.2021.766399] [Reference Citation Analysis]
52 Sekar MP, Budharaju H, Zennifer A, Sethuraman S, Vermeulen N, Sundaramurthi D, Kalaskar DM. Current standards and ethical landscape of engineered tissues-3D bioprinting perspective. J Tissue Eng 2021;12:20417314211027677. [PMID: 34377431 DOI: 10.1177/20417314211027677] [Reference Citation Analysis]
53 Mirzaei M, Okoro OV, Nie L, Petri DFS, Shavandi A. Protein-Based 3D Biofabrication of Biomaterials. Bioengineering (Basel) 2021;8:48. [PMID: 33923425 DOI: 10.3390/bioengineering8040048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]