BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018;19:E1212. [PMID: 29659554 DOI: 10.3390/ijms19041212] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Altinoz MA, Ozpinar A. PPAR-δ and erucic acid in multiple sclerosis and Alzheimer's Disease. Likely benefits in terms of immunity and metabolism. International Immunopharmacology 2019;69:245-56. [DOI: 10.1016/j.intimp.2019.01.057] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
2 Chen L, Hu N, Wang C, Zhao H. HOTAIRM1 knockdown enhances cytarabine-induced cytotoxicity by suppression of glycolysis through the Wnt/β-catenin/PFKP pathway in acute myeloid leukemia cells. Archives of Biochemistry and Biophysics 2020;680:108244. [DOI: 10.1016/j.abb.2019.108244] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
3 Li J, Chen L, Qin Q, Wang D, Zhao J, Gao H, Yuan X, Zhang J, Zou Y, Mao Z, Xiong Y, Min Z, Yan M, Wang CY, Xue Z. Upregulated hexokinase 2 expression induces the apoptosis of dopaminergic neurons by promoting lactate production in Parkinson's disease. Neurobiol Dis 2022;163:105605. [PMID: 34973450 DOI: 10.1016/j.nbd.2021.105605] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Vallée A, Vallée JN, Lecarpentier Y. Potential role of cannabidiol in Parkinson's disease by targeting the WNT/β-catenin pathway, oxidative stress and inflammation. Aging (Albany NY) 2021;13:10796-813. [PMID: 33848261 DOI: 10.18632/aging.202951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Vallée A, Lecarpentier Y, Vallée JN. Cannabidiol and the Canonical WNT/β-Catenin Pathway in Glaucoma. Int J Mol Sci 2021;22:3798. [PMID: 33917605 DOI: 10.3390/ijms22073798] [Reference Citation Analysis]
6 Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X, Tang Y, Su M, Luo X, Wang Y, Wang H, Zhou Y, Liao Q. The roles of glucose metabolic reprogramming in chemo- and radio-resistance. J Exp Clin Cancer Res 2019;38:218. [PMID: 31122265 DOI: 10.1186/s13046-019-1214-z] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 16.3] [Reference Citation Analysis]
7 Vallée A, Vallée JN, Lecarpentier Y. Lithium: a potential therapeutic strategy in obsessive-compulsive disorder by targeting the canonical WNT/β pathway. Transl Psychiatry 2021;11:204. [PMID: 33828076 DOI: 10.1038/s41398-021-01329-3] [Reference Citation Analysis]
8 Ostojic SM. Guanidinoacetic Acid as a Nutritional Adjuvant to Multiple Sclerosis Therapy. Front Hum Neurosci 2022;16:871535. [DOI: 10.3389/fnhum.2022.871535] [Reference Citation Analysis]
9 Colamatteo A, Micillo T, Bruzzaniti S, Fusco C, Garavelli S, De Rosa V, Galgani M, Spagnuolo MI, Di Rella F, Puca AA, de Candia P, Matarese G. Metabolism and Autoimmune Responses: The microRNA Connection. Front Immunol 2019;10:1969. [PMID: 31555261 DOI: 10.3389/fimmu.2019.01969] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
10 Dutta A, Chattopadhyay H. A Brief on Biological Thermodynamics for Human Physiology. J Biomech Eng 2021;143:070802. [PMID: 33704420 DOI: 10.1115/1.4050458] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Ostojic SM, Ostojic J, Zanini D, Jezdimirovic T, Stajer V. Guanidinoacetate-creatine in secondary progressive multiple sclerosis: a case report. J Int Med Res 2022;50:3000605211073305. [PMID: 35000485 DOI: 10.1177/03000605211073305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Victor S, Chew A, Falconer S. Pro12Ala polymorphism of peroxisome proliferator activated receptor gamma 2 may be associated with adverse neurodevelopment in European preterm babies. Brain Behav 2021;11:e2256. [PMID: 34152086 DOI: 10.1002/brb3.2256] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Colwell CS, Ghiani CA. Potential Circadian Rhythms in Oligodendrocytes? Working Together Through Time. Neurochem Res 2020;45:591-605. [PMID: 30906970 DOI: 10.1007/s11064-019-02778-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
14 Sen MK, Almuslehi MSM, Shortland PJ, Coorssen JR, Mahns DA. Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail Been Wagging the Mouse? Front Immunol 2020;11:572186. [PMID: 33117365 DOI: 10.3389/fimmu.2020.572186] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Pollinger J, Gellrich L, Schierle S, Kilu W, Schmidt J, Kalinowsky L, Ohrndorf J, Kaiser A, Heering J, Proschak E, Merk D. Tuning Nuclear Receptor Selectivity of Wy14,643 towards Selective Retinoid X Receptor Modulation. J Med Chem 2019;62:2112-26. [PMID: 30702885 DOI: 10.1021/acs.jmedchem.8b01848] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
16 Liu Y, Wang J, Luo S, Zhan Y, Lu Q. The roles of PPARγ and its agonists in autoimmune diseases: A comprehensive review. J Autoimmun 2020;113:102510. [PMID: 32622513 DOI: 10.1016/j.jaut.2020.102510] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wu L, Guo C, Wu J. Therapeutic potential of PPARγ natural agonists in liver diseases. J Cell Mol Med 2020;24:2736-48. [PMID: 32031298 DOI: 10.1111/jcmm.15028] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
18 Vallée A, Vallée JN, Lecarpentier Y. Lithium and Atypical Antipsychotics: The Possible WNT/β Pathway Target in Glaucoma. Biomedicines 2021;9:473. [PMID: 33925885 DOI: 10.3390/biomedicines9050473] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Vallée A, Lecarpentier Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell Biosci 2019;9:98. [PMID: 31827764 DOI: 10.1186/s13578-019-0362-3] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 11.3] [Reference Citation Analysis]
20 Schmitz JM, Lane SD, Weaver MF, Narayana PA, Hasan KM, Russell DD, Suchting R, Green CE. Targeting white matter neuroprotection as a relapse prevention strategy for treatment of cocaine use disorder: Design of a mechanism-focused randomized clinical trial. Contemp Clin Trials 2021;111:106603. [PMID: 34688917 DOI: 10.1016/j.cct.2021.106603] [Reference Citation Analysis]
21 Ricigliano VA, Tonietto M, Palladino R, Poirion E, De Luca A, Branzoli F, Bera G, Maillart E, Stankoff B, Bodini B. Thalamic energy dysfunction is associated with thalamo-cortical tract damage in multiple sclerosis: A diffusion spectroscopy study. Mult Scler 2021;27:528-38. [PMID: 33566723 DOI: 10.1177/1352458520921362] [Reference Citation Analysis]
22 De Nuccio C, Bernardo A, Troiano C, Brignone MS, Falchi M, Greco A, Rosini M, Basagni F, Lanni C, Serafini MM, Minghetti L, Visentin S. NRF2 and PPAR-γ Pathways in Oligodendrocyte Progenitors: Focus on ROS Protection, Mitochondrial Biogenesis and Promotion of Cell Differentiation. Int J Mol Sci 2020;21:E7216. [PMID: 33003644 DOI: 10.3390/ijms21197216] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
23 Vallée A, Vallée JN, Lecarpentier Y. Parkinson's Disease: Potential Actions of Lithium by Targeting the WNT/β-Catenin Pathway, Oxidative Stress, Inflammation and Glutamatergic Pathway. Cells 2021;10:230. [PMID: 33503974 DOI: 10.3390/cells10020230] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]