BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chilton W, O'Brien B, Charchar F. Telomeres, Aging and Exercise: Guilty by Association? Int J Mol Sci 2017;18:E2573. [PMID: 29186077 DOI: 10.3390/ijms18122573] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
Number Citing Articles
1 Estébanez B, Rodriguez-miguelez P, Fernandez-gonzalo R, González-gallego J, Cuevas MJ. Beneficial effect of physical exercise on telomere length and aging, and genetics of aging-associated noncommunicable diseases. Sports, Exercise, and Nutritional Genomics. Elsevier; 2019. pp. 509-38. [DOI: 10.1016/b978-0-12-816193-7.00022-1] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Bastos MF, Matias MST, Alonso AC, Silva LCR, de Araújo AL, Silva PR, Benard G, Bocalini DS, Steven Baker J, Leme LEG. Moderate levels of physical fitness maintain telomere length in non-senescent T CD8+ cells of aged men. Clinics (Sao Paulo) 2020;75:e1628. [PMID: 33174947 DOI: 10.6061/clinics/2020/e1628] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Balan E, Decottignies A, Deldicque L. Physical Activity and Nutrition: Two Promising Strategies for Telomere Maintenance? Nutrients 2018;10:E1942. [PMID: 30544511 DOI: 10.3390/nu10121942] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
4 Hägg S, Belsky DW, Cohen AA. Developments in molecular epidemiology of aging. Emerg Top Life Sci 2019;3:411-21. [PMID: 33523205 DOI: 10.1042/ETLS20180173] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
5 Behrens G, Niedermaier T, Berneburg M, Schmid D, Leitzmann MF. Physical activity, cardiorespiratory fitness and risk of cutaneous malignant melanoma: Systematic review and meta-analysis. PLoS One 2018;13:e0206087. [PMID: 30379884 DOI: 10.1371/journal.pone.0206087] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
6 Patanè S. Differential effects of training on telomerase activity and telomere length: the role of microRNAs regulation. European Heart Journal 2019;40:3200-3200. [DOI: 10.1093/eurheartj/ehz325] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
7 J W, J J B, M K, S A R M, S M J M. Is Telomere Length a Biomarker of Adaptive Response in Space? Curious Findings from NASA and Residents of High Background Radiation Areas. J Biomed Phys Eng 2019;9:381-8. [PMID: 31341884 DOI: 10.31661/jbpe.v9i3Jun.1151] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
8 Savage SA. Beginning at the ends: telomeres and human disease. F1000Res 2018;7:F1000 Faculty Rev-524. [PMID: 29770205 DOI: 10.12688/f1000research.14068.1] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 16.3] [Reference Citation Analysis]
9 Rossi M, Gorospe M. Noncoding RNAs Controlling Telomere Homeostasis in Senescence and Aging. Trends Mol Med 2020;26:422-33. [PMID: 32277935 DOI: 10.1016/j.molmed.2020.01.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Katsuumi G, Shimizu I, Yoshida Y, Minamino T. Vascular Senescence in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med 2018;5:18. [PMID: 29556500 DOI: 10.3389/fcvm.2018.00018] [Cited by in Crossref: 79] [Cited by in F6Publishing: 74] [Article Influence: 19.8] [Reference Citation Analysis]
11 Yadav S, Maurya PK. Correlation between telomere length and biomarkers of oxidative stress in human aging. Rejuvenation Res 2022. [PMID: 35044242 DOI: 10.1089/rej.2021.0045] [Reference Citation Analysis]
12 Zeng J, Liu H, Ping F, Li W, Li Y. Insulin treatment affects leukocyte telomere length in patients with type 2 diabetes: 6-year longitudinal study. Journal of Diabetes and its Complications 2019;33:363-7. [DOI: 10.1016/j.jdiacomp.2019.02.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
13 Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Grechko AV, Orekhov AN. Role of the mtDNA Mutations and Mitophagy in Inflammaging. IJMS 2022;23:1323. [DOI: 10.3390/ijms23031323] [Reference Citation Analysis]
14 Herman AB, Occean JR, Sen P. Epigenetic dysregulation in cardiovascular aging and disease. J Cardiovasc Aging 2021;1:10. [PMID: 34790973 DOI: 10.20517/jca.2021.16] [Reference Citation Analysis]
15 Poz D, De Falco E, Pisano C, Madonna R, Ferdinandy P, Balistreri CR. Diagnostic and Prognostic Relevance of Red Blood Cell Distribution Width for Vascular Aging and Cardiovascular Diseases. Rejuvenation Res 2019;22:146-62. [PMID: 30132390 DOI: 10.1089/rej.2018.2094] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]