BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chatterjee S, Burns TF. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int J Mol Sci. 2017;18:E1978. [PMID: 28914774 DOI: 10.3390/ijms18091978] [Cited by in Crossref: 191] [Cited by in F6Publishing: 202] [Article Influence: 38.2] [Reference Citation Analysis]
Number Citing Articles
1 Duffy MJ, Tang M, Rajaram S, O'Grady S, Crown J. Targeting Mutant p53 for Cancer Treatment: Moving Closer to Clinical Use? Cancers (Basel) 2022;14:4499. [PMID: 36139658 DOI: 10.3390/cancers14184499] [Reference Citation Analysis]
2 Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem 2022. [PMID: 36063530 DOI: 10.1002/jcb.30326] [Reference Citation Analysis]
3 Huo J, Li J, Liu Y, Yang L, Cao X, Zhao C, Lu Y, Zhou W, Li S, Liu J, Li J, Li X, Wan J, Wen R, Zhen M, Wang C, Bai C. Amphiphilic Aminated Derivatives of [60]Fullerene as Potent Inhibitors of Tumor Growth and Metastasis. Adv Sci (Weinh) 2022;:e2201541. [PMID: 36031401 DOI: 10.1002/advs.202201541] [Reference Citation Analysis]
4 Sklirou AD, Gianniou DD, Karousi P, Cheimonidi C, Papachristopoulou G, Kontos CK, Scorilas A, Trougakos IP. High mRNA Expression Levels of Heat Shock Protein Family B Member 2 (HSPB2) Are Associated with Breast Cancer Patients’ Relapse and Poor Survival. IJMS 2022;23:9758. [DOI: 10.3390/ijms23179758] [Reference Citation Analysis]
5 Ren X, Li T, Zhang W, Yang X. Targeting Heat-Shock Protein 90 in Cancer: An Update on Combination Therapy. Cells 2022;11:2556. [DOI: 10.3390/cells11162556] [Reference Citation Analysis]
6 Petersen MA, Rosenberg CA, Bill M, Enemark MB, Rahbek O, Roug AS, Hasle H, Honoré B, Ludvigsen M. Proteomic Profiling Identifies Specific Leukemic Stem Cell-Associated Protein Expression Patterns in Pediatric AML Patients. Cancers 2022;14:3567. [DOI: 10.3390/cancers14153567] [Reference Citation Analysis]
7 Peinado-Ruiz IC, Burgos-Molina AM, Sendra-Portero F, Ruiz-Gómez MJ. Relationship between heat shock proteins and cellular resistance to drugs and ageing. Exp Gerontol 2022;167:111896. [PMID: 35870754 DOI: 10.1016/j.exger.2022.111896] [Reference Citation Analysis]
8 Chae HY, Park SY, Jha S, Gupta SK, Kim M, Ha E, Seo YH. Design, synthesis, and biological evalution of bifunctional inhibitors against Hsp90-HDAC6 interplay. Eur J Med Chem 2022;240:114582. [PMID: 35834905 DOI: 10.1016/j.ejmech.2022.114582] [Reference Citation Analysis]
9 Fu X, Liu H, Liu J, Disanto ME, Zhang X. The Role of Heat Shock Protein 70 Subfamily in the Hyperplastic Prostate: From Molecular Mechanisms to Therapeutic Opportunities. Cells 2022;11:2052. [DOI: 10.3390/cells11132052] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Özgür A, Kaplan Ö, Gökşen Tosun N, Türkekul İ, Gökçe İ. Green synthesis of silver nanoparticles using Macrolepiota procera extract and investigation of their HSP27, HSP70, and HSP90 inhibitory potentials in human cancer cells. Particulate Science and Technology. [DOI: 10.1080/02726351.2022.2089303] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Zhang J, Huang J, Fang C, Li W, Zhao H, Kong F, Zhang H, Zhang H, Wang Q. Molecular Cloning of Heat Shock Protein 60 (SpHSP60) from Schizothorax prenanti and the Gene Expressions of Four SpHSPs during Lipopolysaccharide (LPS) Infection. Fishes 2022;7:139. [DOI: 10.3390/fishes7030139] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Yong Y, Li J, Yu T, Fang B, Liu X, Yu Z, Ma X, Gooneratne R, El-atye AA, Ju X. Overexpression of heat shock protein 70 induces apoptosis of intestinal epithelial cells in heat-stressed pigs: A proteomics approach. Journal of Thermal Biology 2022. [DOI: 10.1016/j.jtherbio.2022.103289] [Reference Citation Analysis]
13 Wu M, Deng C, Lo T, Chan K, Li X, Wong C. Peroxiredoxin, Senescence, and Cancer. Cells 2022;11:1772. [DOI: 10.3390/cells11111772] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Manunu B, Serafin AM, Akudugu JM. BAG1, MGMT, FOXO1, and DNAJA1 as potential drug targets for radiosensitizing cancer cell lines. Int J Radiat Biol 2022;:1-52. [PMID: 35511481 DOI: 10.1080/09553002.2022.2074164] [Reference Citation Analysis]
15 Alghriany AAI, Omar HEM, Mahmoud AM, Atia MM. Assessment of the Toxicity of Aluminum Oxide and Its Nanoparticles in the Bone Marrow and Liver of Male Mice: Ameliorative Efficacy of Curcumin Nanoparticles. ACS Omega 2022;7:13841-52. [PMID: 35559158 DOI: 10.1021/acsomega.2c00195] [Reference Citation Analysis]
16 Gao K, Zong H, Hou K, Zhang Y, Zhang R, Zhao D, Guo X, Luo Y, Jia S. p53N236S Activates Autophagy in Response to Hypoxic Stress Induced by DFO. Genes 2022;13:763. [DOI: 10.3390/genes13050763] [Reference Citation Analysis]
17 Zaib S, Areeba BS, Nehal Rana BS, Wattoo JI, Alsaab HO, Alzhrani RM, Awwad NS, Ibrahium HA, Khan I. Nanomedicines Targeting Heat Shock Protein 90 Gene Expression in the Therapy of Breast Cancer. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202104553] [Reference Citation Analysis]
18 Chen S, Tian Y, Ju A, Li B, Fu Y, Luo Y. Suppression of CCT3 Inhibits Tumor Progression by Impairing ATP Production and Cytoplasmic Translation in Lung Adenocarcinoma. IJMS 2022;23:3983. [DOI: 10.3390/ijms23073983] [Reference Citation Analysis]
19 Guo Y, Ren Y, Dong X, Kan X, Zheng C. An Overview of Hepatocellular Carcinoma After Insufficient Radiofrequency Ablation. JHC 2022;Volume 9:343-55. [DOI: 10.2147/jhc.s358539] [Reference Citation Analysis]
20 Yi GY, Kim MJ, Kim HI, Park J, Baek SH. Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants 2022;11:625. [DOI: 10.3390/antiox11040625] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Zhou H, Huang X, Shi W, Xu S, Chen J, Huang K, Wang Y. LncRNA RP3-326I13.1 promotes cisplatin resistance in lung adenocarcinoma by binding to HSP90B and upregulating MMP13. Cell Cycle 2022;:1-15. [PMID: 35298351 DOI: 10.1080/15384101.2022.2051971] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Sumi MP, Ghosh A. Hsp90 in Human Diseases: Molecular Mechanisms to Therapeutic Approaches. Cells 2022;11:976. [DOI: 10.3390/cells11060976] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Hu L, Li H, Zi M, Li W, Liu J, Yang Y, Zhou D, Kong QP, Zhang Y, He Y. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Front Cell Dev Biol 2022;10:822816. [PMID: 35252191 DOI: 10.3389/fcell.2022.822816] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
24 Vannas C, Andersson L, Dolatabadi S, Ranji P, Lindén M, Jonasson E, Ståhlberg A, Fagman H, Åman P. Different HSP90 Inhibitors Exert Divergent Effect on Myxoid Liposarcoma In Vitro and In Vivo. Biomedicines 2022;10:624. [DOI: 10.3390/biomedicines10030624] [Reference Citation Analysis]
25 Hsu M, Luo W, Guo B, Chen C, Hu P, Tsai Y, Su K, Lee T. Genetic Deletion of HLJ1 Does Not Affect Blood Coagulation in Mice. IJMS 2022;23:2064. [DOI: 10.3390/ijms23042064] [Reference Citation Analysis]
26 Venugopal DC, Ravindran S, Shyamsundar V, Sankarapandian S, Krishnamurthy A, Sivagnanam A, Madhavan Y, Ramshankar V. Integrated Proteomics Based on 2D Gel Electrophoresis and Mass Spectrometry with Validations: Identification of a Biomarker Compendium for Oral Submucous Fibrosis—An Indian Study. JPM 2022;12:208. [DOI: 10.3390/jpm12020208] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Lv H, Zhang X, Ren Y, Zeng Y, Fang Q, Fu Q, He D, Yan Z. Title The Use of GC‐MS and Network Pharmacology to Analyze the Material Basis and Mechanism of Ligusticum chuanxiong Hort. in Treating Chronic Cerebral Circulation Insufficiency. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202104026] [Reference Citation Analysis]
28 Yin Y, Zhang J, Ma T, Chen D, Lu D. miR-1205/DNAJB1 reverses docetaxel chemoresistance in human triple negative breast carcinoma cells via regulation of mutp53/TAp63 signaling. Acta Biochim Biophys Sin (Shanghai) 2022;54:37-46. [PMID: 35130632 DOI: 10.3724/abbs.2021006] [Reference Citation Analysis]
29 Ratajczak W, Lubkowski M, Lubkowska A. Heat Shock Proteins in Benign Prostatic Hyperplasia and Prostate Cancer. Int J Mol Sci 2022;23:897. [PMID: 35055079 DOI: 10.3390/ijms23020897] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
30 Fan L, Yang M, Ma S, Huang J. Isolation, purification, and characterization of the globulin from wheat germ. Int J of Food Sci Tech. [DOI: 10.1111/ijfs.15542] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Kim YJ, Jeon HR, Kim SW, Kim YH, Im GB, Im J, Um SH, Cho SM, Lee JR, Kim HY, Joung YK, Kim DI, Bhang SH. Lightwave-reinforced stem cells with enhanced wound healing efficacy. J Tissue Eng 2021;12:20417314211067004. [PMID: 34987748 DOI: 10.1177/20417314211067004] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Jaragh-alhadad LA, Harisa GI, Alanazi FK. Development of nimesulide analogs as a dual inhibitor targeting tubulin and HSP27 for treatment of female cancers. Journal of Molecular Structure 2022;1248:131479. [DOI: 10.1016/j.molstruc.2021.131479] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
33 Baldelli S, Limongi D, Coni C, Ciccarone F, Ciotti M, Checconi P, Palamara AT, Ciriolo MR. BK Polyomavirus Activates HSF1 Stimulating Human Kidney Hek293 Cell Proliferation. Oxid Med Cell Longev 2021;2021:9176993. [PMID: 34845419 DOI: 10.1155/2021/9176993] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Zhu S, Lu Y, Jin J, Yu J, Lu W. An HSP90 inhibitor based fluorescent probe for selective tumor targeting. Dyes and Pigments 2021;196:109783. [DOI: 10.1016/j.dyepig.2021.109783] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
35 Gressel GM, Usyk M, Frimer M, Kuo DYS, Burk RD. Characterization of the endometrial, cervicovaginal and anorectal microbiota in post-menopausal women with endometrioid and serous endometrial cancers. PLoS One 2021;16:e0259188. [PMID: 34739493 DOI: 10.1371/journal.pone.0259188] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Atwa G, Omran G, Elbaky AA, Okda T. The antitumour effect of galangin and luteolin with doxorubicin on chemically induced hepatocellular carcinoma in rats. Contemp Oncol (Pozn) 2021;25:174-84. [PMID: 34729037 DOI: 10.5114/wo.2021.110048] [Reference Citation Analysis]
37 Bhadresha K, Upadhyay V, Kumar SP, Pandya P, Jain N, Rawal RM. Computational investigation of ginkgetin and theaflavin as potential inhibitors of heat shock protein 90 (Hsp90). J Biomol Struct Dyn 2021;:1-7. [PMID: 34693877 DOI: 10.1080/07391102.2021.1993344] [Reference Citation Analysis]
38 Abi Zamer B, El-Huneidi W, Eladl MA, Muhammad JS. Ins and Outs of Heat Shock Proteins in Colorectal Carcinoma: Its Role in Carcinogenesis and Therapeutic Perspectives. Cells 2021;10:2862. [PMID: 34831085 DOI: 10.3390/cells10112862] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Kumar AR, Devan AR, Nair B, Vinod BS, Nath LR. Harnessing the immune system against cancer: current immunotherapy approaches and therapeutic targets. Mol Biol Rep 2021;48:8075-95. [PMID: 34671902 DOI: 10.1007/s11033-021-06752-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
40 Boliukh I, Rombel-Bryzek A, Żuk O, Radecka B. The role of heat shock proteins in neoplastic processes and the research on their importance in the diagnosis and treatment of cancer. Contemp Oncol (Pozn) 2021;25:73-9. [PMID: 34667432 DOI: 10.5114/wo.2021.106006] [Reference Citation Analysis]
41 Yang J, Weisberg EL. HSP70 and FLT3-ITD: Targeting chaperone system to overcome drug resistance. Blood Science 2021;3:151-3. [DOI: 10.1097/bs9.0000000000000094] [Reference Citation Analysis]
42 Gutierrez M, Guo R, Giaccone G, Liu SV, Hao Z, Hilton C, Hinson JM Jr, Kris MG, Orlemans EO, Drilon A. Phase 1 multicenter study of the HSP90 inhibitor SNX-5422 plus carboplatin and paclitaxel in patients with lung cancers. Lung Cancer 2021;162:23-8. [PMID: 34655925 DOI: 10.1016/j.lungcan.2021.10.001] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
43 Biegała Ł, Gajek A, Marczak A, Rogalska A. PARP inhibitor resistance in ovarian cancer: Underlying mechanisms and therapeutic approaches targeting the ATR/CHK1 pathway. Biochim Biophys Acta Rev Cancer 2021;1876:188633. [PMID: 34619333 DOI: 10.1016/j.bbcan.2021.188633] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
44 Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021;11:1475. [PMID: 34680108 DOI: 10.3390/biom11101475] [Reference Citation Analysis]
45 Basset CA, Rappa F, Lentini VL, Barone R, Pitruzzella A, Unti E, Cappello F, Conway de Macario E, Macario AJL, Leone A. Hsp27 and Hsp60 in human submandibular salivary gland: Quantitative patterns in healthy and cancerous tissues with potential implications for differential diagnosis and carcinogenesis. Acta Histochem 2021;123:151771. [PMID: 34419757 DOI: 10.1016/j.acthis.2021.151771] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Hrudka J, Jelínková K, Fišerová H, Matěj R, Mandys V, Waldauf P. Heat Shock Proteins 27, 70, and 110: Expression and Prognostic Significance in Colorectal Cancer. Cancers (Basel) 2021;13:4407. [PMID: 34503216 DOI: 10.3390/cancers13174407] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
47 Yang S, Xiao H, Cao L. Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment. Biomed Pharmacother 2021;142:112074. [PMID: 34426258 DOI: 10.1016/j.biopha.2021.112074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
48 Liu PY, Shen HH, Kung CW, Chen SY, Lu CH, Lee YM. The Role of HSP70 in the Protective Effects of NVP-AUY922 on Multiple Organ Dysfunction Syndrome in Endotoxemic Rats. Front Pharmacol 2021;12:724515. [PMID: 34421617 DOI: 10.3389/fphar.2021.724515] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Dernovšek J, Zajec Ž, Durcik M, Mašič LP, Gobec M, Zidar N, Tomašič T. Structure-Activity Relationships of Benzothiazole-Based Hsp90 C-Terminal-Domain Inhibitors. Pharmaceutics 2021;13:1283. [PMID: 34452244 DOI: 10.3390/pharmaceutics13081283] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
50 Maurizy C, Abeza C, Lemmers B, Gabola M, Longobardi C, Pinet V, Ferrand M, Paul C, Bremond J, Langa F, Gerbe F, Jay P, Verheggen C, Tinari N, Helmlinger D, Lattanzio R, Bertrand E, Hahne M, Pradet-Balade B. The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nat Commun 2021;12:4810. [PMID: 34376666 DOI: 10.1038/s41467-021-24792-4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
51 Sherin DR, Manojkumar TK. Exploring the selectivity of guanine scaffold in anticancer drug development by computational repurposing approach. Sci Rep 2021;11:16251. [PMID: 34376738 DOI: 10.1038/s41598-021-95507-4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
52 Parma B, Ramesh V, Gollavilli PN, Siddiqui A, Pinna L, Schwab A, Marschall S, Zhang S, Pilarsky C, Napoli F, Volante M, Urbanczyk S, Mielenz D, Schrøder HD, Stemmler M, Wurdak H, Ceppi P. Metabolic impairment of non-small cell lung cancers by mitochondrial HSPD1 targeting. J Exp Clin Cancer Res 2021;40:248. [PMID: 34364401 DOI: 10.1186/s13046-021-02049-8] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
53 Santos EC, Gomes RB, Fernandes PV, Ferreira MA, Abdelhay ESFW. The protein-protein interaction network of intestinal gastric cancer patients reveals hub proteins with potential prognostic value. Cancer Biomark 2021. [PMID: 34366321 DOI: 10.3233/CBM-203225] [Reference Citation Analysis]
54 Shen CH, Hsieh CC, Jiang KY, Lin CY, Chiang NJ, Li TW, Yen CT, Chen WJ, Hwang DY, Chen LT. AUY922 induces retinal toxicity through attenuating TRPM1. J Biomed Sci 2021;28:55. [PMID: 34301262 DOI: 10.1186/s12929-021-00751-5] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
55 Oh YJ, Park SY, Seo YH. Selective targeting of cancer cells using a hydrogen peroxide-activated Hsp90 inhibitor. Bioorg Chem 2021;115:105195. [PMID: 34314918 DOI: 10.1016/j.bioorg.2021.105195] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
56 Alharbi MG, Lee SH, Abdelazim AM, Saadeldin IM, Abomughaid MM. Role of Extracellular Vesicles in Compromising Cellular Resilience to Environmental Stressors. Biomed Res Int 2021;2021:9912281. [PMID: 34337063 DOI: 10.1155/2021/9912281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
57 de Sousa E, Lérias JR, Beltran A, Paraschoudi G, Condeço C, Kamiki J, António PA, Figueiredo N, Carvalho C, Castillo-Martin M, Wang Z, Ligeiro D, Rao M, Maeurer M. Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery. Front Immunol 2021;12:592031. [PMID: 34335558 DOI: 10.3389/fimmu.2021.592031] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
58 Zhang X, Liu X, Zhang Y, Yang A, Zhang Y, Tong Z, Wang Y, Qiu Y. Wan-Nian-Qing, a Herbal Composite Prescription, Suppresses the Progression of Liver Cancer in Mice by Regulating Immune Response. Front Oncol 2021;11:696282. [PMID: 34307161 DOI: 10.3389/fonc.2021.696282] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
59 Hu JM, Hsu CH, Lin YC, Kung CW, Chen SY, Lin WT, Cheng PY, Shen HH, Lee YM. Ethyl pyruvate ameliorates heat stroke-induced multiple organ dysfunction and inflammatory responses by induction of stress proteins and activation of autophagy in rats. Int J Hyperthermia 2021;38:862-74. [PMID: 34078225 DOI: 10.1080/02656736.2021.1931479] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
60 Chen O, Michlíková S, Eckhardt L, Wondrak M, De Mendoza AM, Krause M, McLeod DD, Kunz-Schughart LA. Efficient Heat Shock Response Affects Hyperthermia-Induced Radiosensitization in a Tumor Spheroid Control Probability Assay. Cancers (Basel) 2021;13:3168. [PMID: 34201993 DOI: 10.3390/cancers13133168] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Dublang L, Underhaug J, Flydal MI, Velasco-Carneros L, Maréchal JD, Moro F, Boyano MD, Martinez A, Muga A. Inhibition of the Human Hsc70 System by Small Ligands as a Potential Anticancer Approach. Cancers (Basel) 2021;13:2936. [PMID: 34208232 DOI: 10.3390/cancers13122936] [Reference Citation Analysis]
62 Bahrami S, Kazemi B, Zali H, Black PC, Basiri A, Bandehpour M, Hedayati M, Sahebkar A. Discovering Therapeutic Protein Targets for Bladder Cancer Using Proteomic Data Analysis. Curr Mol Pharmacol 2020;13:150-72. [PMID: 31622214 DOI: 10.2174/1874467212666191016124935] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
63 Behl T, Sharma A, Sharma L, Sehgal A, Singh S, Sharma N, Zengin G, Bungau S, Toma MM, Gitea D, Babes EE, Judea Pusta CT, Bumbu AG. Current Perspective on the Natural Compounds and Drug Delivery Techniques in Glioblastoma Multiforme. Cancers (Basel) 2021;13:2765. [PMID: 34199460 DOI: 10.3390/cancers13112765] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
64 Macario AJL, Conway de Macario E. Chaperonins in cancer: Expression, function, and migration in extracellular vesicles. Semin Cancer Biol 2021:S1044-579X(21)00159-0. [PMID: 34087417 DOI: 10.1016/j.semcancer.2021.05.029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
65 Özsoy S, Becer E, Kabadayı H, Vatansever HS, Yücecan S. Quercetin-Mediated Apoptosis and Cellular Senescence in Human Colon Cancer. Anticancer Agents Med Chem 2020;20:1387-96. [PMID: 32268873 DOI: 10.2174/1871520620666200408082026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
66 Tian G, Hu C, Yun Y, Yang W, Dubiel W, Cheng Y, Wolf DA. Dual roles of HSP70 chaperone HSPA1 in quality control of nascent and newly synthesized proteins. EMBO J 2021;40:e106183. [PMID: 34010456 DOI: 10.15252/embj.2020106183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Schoedel K, Miller V, Osei-Hwedieh D, Watters R, Duensing A, John I, Chandran U, Chang A, Soman V, Weiss K. Differential expression of angiogenesis markers HSP70, HSP90, VEGF and pERK1/2 in both components of dedifferentiated chondrosarcomas. J Bone Oncol 2021;29:100370. [PMID: 34094840 DOI: 10.1016/j.jbo.2021.100370] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
68 Debele TA, Wu PC, Wei YF, Chuang JY, Chang KY, Tsai JH, Su WP. Transferrin Modified GSH Sensitive Hyaluronic Acid Derivative Micelle to Deliver HSP90 Inhibitors to Enhance the Therapeutic Efficacy of Brain Cancers. Cancers (Basel) 2021;13:2375. [PMID: 34069106 DOI: 10.3390/cancers13102375] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
69 Jee B, Dhar R, Singh S, Karmakar S. Heat Shock Proteins and Their Role in Pregnancy: Redefining the Function of "Old Rum in a New Bottle". Front Cell Dev Biol 2021;9:648463. [PMID: 33996811 DOI: 10.3389/fcell.2021.648463] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
70 Kim J, Kusko R, Zeskind B, Zhang J, Escalante-Chong R. A primer on applying AI synergistically with domain expertise to oncology. Biochim Biophys Acta Rev Cancer 2021;1876:188548. [PMID: 33901609 DOI: 10.1016/j.bbcan.2021.188548] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Kuhara K, Kitagawa T, Baron B, Tokuda K, Sakamoto K, Nagano H, Nakamura K, Kobayashi M, Nagayasu H, Kuramitsu Y. Proteomic Analysis of Hepatocellular Carcinoma Tissues With Encapsulation Shows Up-regulation of Leucine Aminopeptidase 3 and Phosphoenolpyruvate Carboxykinase 2. Cancer Genomics Proteomics 2021;18:307-16. [PMID: 33893083 DOI: 10.21873/cgp.20261] [Reference Citation Analysis]
72 Ray AM, Salim N, Stevens M, Chitre S, Abdeen S, Washburn A, Sivinski J, O'Hagan HM, Chapman E, Johnson SM. Exploiting the HSP60/10 chaperonin system as a chemotherapeutic target for colorectal cancer. Bioorg Med Chem 2021;40:116129. [PMID: 33971488 DOI: 10.1016/j.bmc.2021.116129] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
73 Pitruzzella A, Burgio S, Lo Presti P, Ingrao S, Fucarino A, Bucchieri F, Cabibi D, Cappello F, Conway de Macario E, Macario AJL, David S, Rappa F. Hsp60 Quantification in Human Gastric Mucosa Shows Differences between Pathologies with Various Degrees of Proliferation and Malignancy Grade. Applied Sciences 2021;11:3582. [DOI: 10.3390/app11083582] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Yuan CS, Deng ZW, Qin D, Mu YZ, Chen XG, Liu Y. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand? Acta Biomater 2021;125:1-28. [PMID: 33639310 DOI: 10.1016/j.actbio.2021.02.030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
75 Vihervaara A, Mahat DB, Himanen SV, Blom MAH, Lis JT, Sistonen L. Stress-induced transcriptional memory accelerates promoter-proximal pause release and decelerates termination over mitotic divisions. Mol Cell 2021;81:1715-1731.e6. [PMID: 33784494 DOI: 10.1016/j.molcel.2021.03.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
76 Buttacavoli M, Di Cara G, D'Amico C, Geraci F, Pucci-Minafra I, Feo S, Cancemi P. Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches. Biology (Basel) 2021;10:247. [PMID: 33810095 DOI: 10.3390/biology10030247] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
77 Scutigliani EM, Liang Y, Crezee H, Kanaar R, Krawczyk PM. Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021;13:1243. [PMID: 33808973 DOI: 10.3390/cancers13061243] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
78 Rodrigo MAM, Michalkova H, Strmiska V, Casar B, Crespo P, de Los Rios V, Ignacio Casal J, Haddad Y, Guran R, Eckschlager T, Pokorna P, Heger Z, Adam V. Metallothionein-3 promotes cisplatin chemoresistance remodelling in neuroblastoma. Sci Rep 2021;11:5496. [PMID: 33750814 DOI: 10.1038/s41598-021-84185-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
79 Zhang H, Gong W, Wu S, Perrett S. Studying protein folding in health and disease using biophysical approaches. Emerg Top Life Sci 2021;5:29-38. [PMID: 33660767 DOI: 10.1042/ETLS20200317] [Reference Citation Analysis]
80 Kathera CS, Longwei J, Janardhan A, Qin L, Zhang Q, Lan W, Shaochang J, Guo Z. Lung cancer: progression of heat shock protein 70 in association with flap endonuclease 1 protein. 3 Biotech 2021;11:141. [PMID: 33708464 DOI: 10.1007/s13205-020-02598-3] [Reference Citation Analysis]
81 Gomig THB, Gontarski AM, Cavalli IJ, Souza RLR, Lucena ACR, Batista M, Machado KC, Marchini FK, Marchi FA, Lima RS, Urban CA, Marchi RD, Cavalli LR, Ribeiro EMSF. Integrated analysis of label-free quantitative proteomics and bioinformatics reveal insights into signaling pathways in male breast cancer. Genet Mol Biol 2021;44:e20190410. [PMID: 33656060 DOI: 10.1590/1678-4685-GMB-2019-0410] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
82 Yoshimura C, Nagatoishi S, Kuroda D, Kodama Y, Uno T, Kitade M, Chong-Takata K, Oshiumi H, Muraoka H, Yamashita S, Kawai Y, Ohkubo S, Tsumoto K. Thermodynamic Dissection of Potency and Selectivity of Cytosolic Hsp90 Inhibitors. J Med Chem 2021;64:2669-77. [PMID: 33621080 DOI: 10.1021/acs.jmedchem.0c01715] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
83 Mikeladze MA, Dutysheva EA, Kartsev VG, Margulis BA, Guzhova IV, Lazarev VF. Disruption of the Complex between GAPDH and Hsp70 Sensitizes C6 Glioblastoma Cells to Hypoxic Stress. Int J Mol Sci 2021;22:1520. [PMID: 33546324 DOI: 10.3390/ijms22041520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
84 Pastvova N, Dolezel P, Mlejnek P. Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters. Pharmaceuticals (Basel) 2021;14:107. [PMID: 33573093 DOI: 10.3390/ph14020107] [Reference Citation Analysis]
85 Chakafana G, Shonhai A. The Role of Non-Canonical Hsp70s (Hsp110/Grp170) in Cancer. Cells 2021;10:254. [PMID: 33525518 DOI: 10.3390/cells10020254] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
86 Hanna R, Abdallah J, Abou-Antoun T. A Novel Mechanism of 17-AAG Therapeutic Efficacy on HSP90 Inhibition in MYCN-Amplified Neuroblastoma Cells. Front Oncol 2020;10:624560. [PMID: 33569349 DOI: 10.3389/fonc.2020.624560] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
87 Prasanna P, Upadhyay A. Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infect Immun 2021;89:e00559-20. [PMID: 33139381 DOI: 10.1128/IAI.00559-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
88 Deng Y, Wang X, Liu Y, Xu Y, Zhang J, Huang F, Li B, Miao Y, Sun Y, Li Y. Dual-light triggered metabolizable nano-micelles for selective tumor-targeted photodynamic/hyperthermia therapy. Acta Biomater 2021;119:323-36. [PMID: 33122146 DOI: 10.1016/j.actbio.2020.10.036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
89 Qiao S, Xin F, Wu M, Zheng Y, Zhao B, Zhang C, Liu X, Wei Z, Liu J. A remotely controlled NIR-II photothermal-sensitive transgene system for hepatocellular carcinoma synergistic therapy. J Mater Chem B 2021;9:5083-91. [PMID: 34124729 DOI: 10.1039/d1tb00493j] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
90 Hyun SY, Le HT, Min HY, Pei H, Lim Y, Song I, Nguyen YTK, Hong S, Han BW, Lee HY. Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70. Theranostics 2021;11:2932-52. [PMID: 33456581 DOI: 10.7150/thno.49876] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
91 Zhang Z, Jing J, Ye Y, Chen Z, Jing Y, Li S, Hong W, Ruan H, Liu Y, Hu Q, Wang J, Li W, Lin C, Diao L, Zhou Y, Han L. Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors. Genome Med 2020;12:101. [PMID: 33225964 DOI: 10.1186/s13073-020-00795-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
92 Singh P, Unik B, Puri A, Nagpal G, Singh B, Gautam A, Sharma D. HSPMdb: a computational repository of heat shock protein modulators. Database (Oxford) 2020;2020:baaa003. [PMID: 32090260 DOI: 10.1093/database/baaa003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
93 Martinho MS, Nancarrow DJ, Lawrence TS, Beer DG, Ray D. Chaperones and Ubiquitin Ligases Balance Mutant p53 Protein Stability in Esophageal and Other Digestive Cancers. Cell Mol Gastroenterol Hepatol 2021;11:449-64. [PMID: 33130332 DOI: 10.1016/j.jcmgh.2020.10.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
94 Caporossi D, Parisi A, Fantini C, Grazioli E, Cerulli C, Dimauro I. AlphaB-crystallin and breast cancer: role and possible therapeutic strategies. Cell Stress Chaperones 2021;26:19-28. [PMID: 33111264 DOI: 10.1007/s12192-020-01175-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
95 Hellinger JW, Schömel F, Buse JV, Lenz C, Bauerschmitz G, Emons G, Gründker C. Identification of drivers of breast cancer invasion by secretome analysis: insight into CTGF signaling. Sci Rep 2020;10:17889. [PMID: 33087801 DOI: 10.1038/s41598-020-74838-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
96 Jiao X, Zhang W, Zhang L, Cao Y, Xu Z, Kang Y, Xue P. Rational design of oxygen deficient TiO2-x nanoparticles conjugated with chlorin e6 (Ce6) for photoacoustic imaging-guided photothermal/photodynamic dual therapy of cancer. Nanoscale 2020;12:1707-18. [PMID: 31894823 DOI: 10.1039/c9nr09423g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
97 Wang L, Xu X, Jiang Z, You Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm Sin B 2020;10:1904-25. [PMID: 33163343 DOI: 10.1016/j.apsb.2020.01.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
98 Jing XY, Li FM. Identifying Heat Shock Protein Families from Imbalanced Data by Using Combined Features. Comput Math Methods Med 2020;2020:8894478. [PMID: 33029195 DOI: 10.1155/2020/8894478] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
99 De Almeida S, Regimbeau M, Jego G, Garrido C, Girodon F, Hermetet F. Heat Shock Proteins and PD-1/PD-L1 as Potential Therapeutic Targets in Myeloproliferative Neoplasms. Cancers (Basel) 2020;12:E2592. [PMID: 32932806 DOI: 10.3390/cancers12092592] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
100 Yang J, Gu J, Hu Y, Wang N, Gao J, Wang P. Molecular cloning and characterization of HSP60 gene in domestic pigeons (Columba livia) and differential expression patterns under temperature stress. Cell Stress Chaperones 2021;26:115-27. [PMID: 32880058 DOI: 10.1007/s12192-020-01160-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
101 Zou T, Liu JY, She L, Yin JY, Li X, Li XP, Zhou HH, Chen J, Liu ZQ. The Association Between Heat-Shock Protein Polymorphisms and Prognosis in Lung Cancer Patients Treated With Platinum-Based Chemotherapy. Front Pharmacol 2020;11:1029. [PMID: 32848724 DOI: 10.3389/fphar.2020.01029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
102 Nazar A, Abbas G, Azam SS. Deciphering the Inhibition Mechanism of under Trial Hsp90 Inhibitors and Their Analogues: A Comparative Molecular Dynamics Simulation. J Chem Inf Model 2020;60:3812-30. [PMID: 32659088 DOI: 10.1021/acs.jcim.9b01134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
103 Brancolini C, Iuliano L. Proteotoxic Stress and Cell Death in Cancer Cells. Cancers (Basel) 2020;12:E2385. [PMID: 32842524 DOI: 10.3390/cancers12092385] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
104 Lee JC, Sim DY, Lee H, Im E, Choi J, Park JE, Park WY, Jung JH, Shim BS, Kim S. MicroRNA216b mediated downregulation of HSP27 / STAT3 / AKT signaling is critically involved in lambertianic acid induced apoptosis in human cervical cancers. Phytotherapy Research 2021;35:898-907. [DOI: 10.1002/ptr.6842] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
105 Godoy-Castillo C, Bravo-Acuña N, Arriagada G, Faunes F, León R, Soto-Delgado J. Identification of the naphthoquinone derivative inhibitors binding site in heat shock protein 90: an induced-fit docking, molecular dynamics and 3D-QSAR study. J Biomol Struct Dyn 2021;39:5977-87. [PMID: 32799638 DOI: 10.1080/07391102.2020.1803134] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
106 Chen X, Zhao Y, Luo W, Chen S, Lin F, Zhang X, Fan S, Shen X, Wang Y, Liang G. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. Theranostics 2020;10:10290-308. [PMID: 32929349 DOI: 10.7150/thno.46728] [Cited by in Crossref: 23] [Cited by in F6Publishing: 32] [Article Influence: 11.5] [Reference Citation Analysis]
107 Liu T, Liu D, Kong X, Dong M. Clinicopathological Significance of Heat Shock Protein (HSP) 27 Expression in Gastric Cancer: A Updated Meta-Analysis. Evid Based Complement Alternat Med 2020;2020:7018562. [PMID: 32774426 DOI: 10.1155/2020/7018562] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
108 Roufayel R, Kadry S. Molecular Chaperone HSP70 and Key Regulators of Apoptosis - A Review. Curr Mol Med 2019;19:315-25. [PMID: 30914024 DOI: 10.2174/1566524019666190326114720] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
109 Sanchez-Martin C, Serapian SA, Colombo G, Rasola A. Dynamically Shaping Chaperones. Allosteric Modulators of HSP90 Family as Regulatory Tools of Cell Metabolism in Neoplastic Progression. Front Oncol 2020;10:1177. [PMID: 32766157 DOI: 10.3389/fonc.2020.01177] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
110 Romeo MA, Gilardini Montani MS, Benedetti R, Santarelli R, D'Orazi G, Cirone M. STAT3 and mutp53 Engage a Positive Feedback Loop Involving HSP90 and the Mevalonate Pathway. Front Oncol 2020;10:1102. [PMID: 32754441 DOI: 10.3389/fonc.2020.01102] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
111 Ullah M, Liu DD, Rai S, Concepcion W, Thakor AS. HSP70-Mediated NLRP3 Inflammasome Suppression Underlies Reversal of Acute Kidney Injury Following Extracellular Vesicle and Focused Ultrasound Combination Therapy. Int J Mol Sci 2020;21:E4085. [PMID: 32521623 DOI: 10.3390/ijms21114085] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
112 Christensen LP. Bioactive C17 and C18 Acetylenic Oxylipins from Terrestrial Plants as Potential Lead Compounds for Anticancer Drug Development. Molecules 2020;25:E2568. [PMID: 32486470 DOI: 10.3390/molecules25112568] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
113 Machuca A, Garcia‐calvo E, Anunciação DS, Luque‐garcia JL. Rhodium Nanoparticles as a Novel Photosensitizing Agent in Photodynamic Therapy against Cancer. Chem Eur J 2020;26:7685-91. [DOI: 10.1002/chem.202001112] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
114 Bandyopadhayaya S, Ford B, Mandal CC. Cold-hearted: A case for cold stress in cancer risk. J Therm Biol 2020;91:102608. [PMID: 32716858 DOI: 10.1016/j.jtherbio.2020.102608] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
115 Harmse L, Gangat N, Martins-Furness C, Dam J, de Koning CB. Copper-imidazo[1,2-a]pyridines induce intrinsic apoptosis and modulate the expression of mutated p53, haem-oxygenase-1 and apoptotic inhibitory proteins in HT-29 colorectal cancer cells. Apoptosis 2019;24:623-43. [PMID: 31073781 DOI: 10.1007/s10495-019-01547-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
116 Jozkowiak M, Skupin-Mrugalska P, Nowicki A, Borys-Wojcik S, Wierzchowski M, Kaczmarek M, Ramlau P, Jodynis-Liebert J, Piotrowska-Kempisty H. The Effect of 4'-hydroxy-3,4,5-trimetoxystilbene, the Metabolite of Resveratrol Analogue DMU-212, on Growth, Cell Cycle and Apoptosis in DLD-1 and LOVO Colon Cancer Cell Lines. Nutrients 2020;12:E1327. [PMID: 32392733 DOI: 10.3390/nu12051327] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
117 Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Taranejoo S, Zali H. HSP90 and Co-chaperones: Impact on Tumor Progression and Prospects for Molecular-Targeted Cancer Therapy. Cancer Invest 2020;38:310-28. [PMID: 32274949 DOI: 10.1080/07357907.2020.1752227] [Cited by in Crossref: 10] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
118 Sylvester CL, Anderson PH, Stringer AM. New therapeutic strategies for combatting gastrointestinal toxicity. Curr Opin Support Palliat Care 2020;14:142-52. [PMID: 32332213 DOI: 10.1097/SPC.0000000000000500] [Reference Citation Analysis]
119 Hoter A, Rizk S, Naim HY. Heat Shock Protein 60 in Hepatocellular Carcinoma: Insights and Perspectives. Front Mol Biosci 2020;7:60. [PMID: 32351972 DOI: 10.3389/fmolb.2020.00060] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
120 Zhang J, Hu C, Jiao X, Yang Y, Li J, Yu H, Qin Y, Wei Y. Potential Role of mRNAs and LncRNAs in Chronic Intermittent Hypoxia Exposure-Aggravated Atherosclerosis. Front Genet 2020;11:290. [PMID: 32328084 DOI: 10.3389/fgene.2020.00290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
121 Mittal S, Rajala MS. Heat shock proteins as biomarkers of lung cancer. Cancer Biol Ther 2020;21:477-85. [PMID: 32228356 DOI: 10.1080/15384047.2020.1736482] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
122 Fucarino A, Pitruzzella A. Role of HSP60/HSP10 in Lung Cancer: Simple Biomarkers or Leading Actors? J Oncol 2020;2020:4701868. [PMID: 32318107 DOI: 10.1155/2020/4701868] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
123 Liu Z, Liu Y, Long Y, Liu B, Wang X. Role of HSP27 in the multidrug sensitivity and resistance of colon cancer cells. Oncol Lett 2020;19:2021-7. [PMID: 32194698 DOI: 10.3892/ol.2020.11255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
124 Whitmore A, Freeny D, Sojourner SJ, Miles JS, Graham WM, Flores-Rozas H. Evaluation of the Role of Human DNAJAs in the Response to Cytotoxic Chemotherapeutic Agents in a Yeast Model System. Biomed Res Int 2020;2020:9097638. [PMID: 32149145 DOI: 10.1155/2020/9097638] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
125 Xu D, Dong P, Xiong Y, Yue J, Konno Y, Ihira K, Kobayashi N, Todo Y, Watari H. MicroRNA-361-Mediated Inhibition of HSP90 Expression and EMT in Cervical Cancer Is Counteracted by Oncogenic lncRNA NEAT1. Cells 2020;9:E632. [PMID: 32151082 DOI: 10.3390/cells9030632] [Cited by in Crossref: 12] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
126 Harper AK, Fletcher NM, Fan R, Morris RT, Saed GM. Heat Shock Protein 60 (HSP60) Serves as a Potential Target for the Sensitization of Chemoresistant Ovarian Cancer Cells. Reprod Sci 2020;27:1030-6. [DOI: 10.1007/s43032-019-00089-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
127 Aviner R, Frydman J. Proteostasis in Viral Infection: Unfolding the Complex Virus-Chaperone Interplay. Cold Spring Harb Perspect Biol 2020;12:a034090. [PMID: 30858229 DOI: 10.1101/cshperspect.a034090] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
128 Aissani B, Martinez-Maza O, Kaslow RA, Wiener HW, Bream JH, Stosor V, Martinson JJ, Jacobson LP, Shrestha S. Increasing Levels of Serum Heat Shock Protein 70 Precede the Development of AIDS-Defining Non-Hodgkin Lymphoma Among Carriers of HLA-B8-DR3. J Acquir Immune Defic Syndr 2019;81:266-73. [PMID: 31026237 DOI: 10.1097/QAI.0000000000002027] [Reference Citation Analysis]
129 Pandian J, Panneerpandian P, Devanandan HJ, Sekar BT, Balakrishnan K, Selvarasu K, Muthupandi K, Ganesan K. Identification of the targeted therapeutic potential of doxycycline for a subset of gastric cancer patients. Ann N Y Acad Sci 2020;1467:94-111. [PMID: 31944316 DOI: 10.1111/nyas.14288] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
130 Díaz-Díaz A, Roca-Lema D, Casas-Pais A, Romay G, Colombo G, Concha Á, Graña B, Figueroa A. Heat Shock Protein 90 Chaperone Regulates the E3 Ubiquitin-Ligase Hakai Protein Stability. Cancers (Basel) 2020;12:E215. [PMID: 31952268 DOI: 10.3390/cancers12010215] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
131 Jahangirizadeh Z, Ghafouri H, Sajedi RH, Sariri R, Hossienkhani S. Rapid and simple screening of the apoptotic compounds based on Hsp70 inhibition using luciferase as an intracellular reporter. Anal Bioanal Chem 2020;412:149-58. [PMID: 31897564 DOI: 10.1007/s00216-019-02220-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
132 Jiang Q, Shen X. Research Progress of Heat Shock Protein 90 and Hepatocellular Carcinoma. IJCM 2020;11:43-52. [DOI: 10.4236/ijcm.2020.112005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Jung S, Yoon NG, Yang S, Kim D, Lee WS, Hong KB, Lee C, Kang BH, Lee JH, Kang S. Discovery of 2-((4-resorcinolyl)-5-aryl-1,2,3-triazol-1-yl)acetates as potent Hsp90 inhibitors with selectivity over TRAP1. Bioorganic & Medicinal Chemistry Letters 2020;30:126809. [DOI: 10.1016/j.bmcl.2019.126809] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
134 Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019;9:E60. [PMID: 31878360 DOI: 10.3390/cells9010060] [Cited by in Crossref: 45] [Cited by in F6Publishing: 73] [Article Influence: 15.0] [Reference Citation Analysis]
135 Jego G, Hermetet F, Girodon F, Garrido C. Chaperoning STAT3/5 by Heat Shock Proteins: Interest of Their Targeting in Cancer Therapy. Cancers (Basel) 2019;12:E21. [PMID: 31861612 DOI: 10.3390/cancers12010021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
136 Hou ZS, Wen HS, Li JF, He F, Li Y, Qi X. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). Sci Total Environ 2020;705:135272. [PMID: 31841926 DOI: 10.1016/j.scitotenv.2019.135272] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
137 Kovács D, Sigmond T, Hotzi B, Bohár B, Fazekas D, Deák V, Vellai T, Barna J. HSF1Base: A Comprehensive Database of HSF1 (Heat Shock Factor 1) Target Genes. Int J Mol Sci 2019;20:E5815. [PMID: 31752429 DOI: 10.3390/ijms20225815] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]
138 Santofimia-Castaño P, Xia Y, Peng L, Velázquez-Campoy A, Abián O, Lan W, Lomberk G, Urrutia R, Rizzuti B, Soubeyran P, Neira JL, Iovanna J. Targeting the Stress-Induced Protein NUPR1 to Treat Pancreatic Adenocarcinoma. Cells 2019;8:E1453. [PMID: 31744261 DOI: 10.3390/cells8111453] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
139 Fouda MA, Elzefzafy NA, Taha II, Mohemmed OM, Wahab AAA, Farahat IG. Effect of seasonal variation in ambient temperature on RNA quality of breast cancer tissue in a remote biobank setting. Exp Mol Pathol 2020;112:104334. [PMID: 31726039 DOI: 10.1016/j.yexmp.2019.104334] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
140 Gao Y, Kim S, Lee YI, Lee J. Cellular Stress-Modulating Drugs Can Potentially Be Identified by in Silico Screening with Connectivity Map (CMap). Int J Mol Sci 2019;20:E5601. [PMID: 31717493 DOI: 10.3390/ijms20225601] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
141 Liu W, Caglar MU, Mao Z, Woodman A, Arnold JJ, Wilke CO, Cameron CE. More than efficacy revealed by single-cell analysis of antiviral therapeutics. Sci Adv 2019;5:eaax4761. [PMID: 31692968 DOI: 10.1126/sciadv.aax4761] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
142 Hoter A, Naim HY. The Functions and Therapeutic Potential of Heat Shock Proteins in Inflammatory Bowel Disease-An Update. Int J Mol Sci 2019;20:E5331. [PMID: 31717769 DOI: 10.3390/ijms20215331] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
143 Pitruzzella A, Paladino L, Vitale A, Martorana S, Cipolla C, Graceffa G, Cabibi D, David S, Fucarino A, Bucchieri F, Cappello F, Conway de Macario E, Macario A, Rappa F. Quantitative Immunomorphological Analysis of Heat Shock Proteins in Thyroid Follicular Adenoma and Carcinoma Tissues Reveals Their Potential for Differential Diagnosis and Points to a Role in Carcinogenesis. Applied Sciences 2019;9:4324. [DOI: 10.3390/app9204324] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Nepali K, Lin M, Chao M, Peng S, Hsu K, Eight Lin T, Chen M, Lai M, Pan S, Liou J. Amide-tethered quinoline-resorcinol conjugates as a new class of HSP90 inhibitors suppressing the growth of prostate cancer cells. Bioorganic Chemistry 2019;91:103119. [DOI: 10.1016/j.bioorg.2019.103119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
145 Chakafana G, Zininga T, Shonhai A. The Link That Binds: The Linker of Hsp70 as a Helm of the Protein's Function. Biomolecules 2019;9:E543. [PMID: 31569820 DOI: 10.3390/biom9100543] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
146 Ban HS, Han TS, Hur K, Cho HS. Epigenetic Alterations of Heat Shock Proteins (HSPs) in Cancer. Int J Mol Sci 2019;20:E4758. [PMID: 31557887 DOI: 10.3390/ijms20194758] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
147 Razaghi A, Heimann K, Schaeffer PM, Gibson SB. Negative regulators of cell death pathways in cancer: perspective on biomarkers and targeted therapies. Apoptosis 2018;23:93-112. [PMID: 29322476 DOI: 10.1007/s10495-018-1440-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
148 Dubrez L, Causse S, Borges Bonan N, Dumétier B, Garrido C. Heat-shock proteins: chaperoning DNA repair. Oncogene 2020;39:516-29. [DOI: 10.1038/s41388-019-1016-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 36] [Article Influence: 8.3] [Reference Citation Analysis]
149 Hoter A, Naim HY. Heat Shock Proteins and Ovarian Cancer: Important Roles and Therapeutic Opportunities. Cancers (Basel) 2019;11:E1389. [PMID: 31540420 DOI: 10.3390/cancers11091389] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
150 Taha EA, Ono K, Eguchi T. Roles of Extracellular HSPs as Biomarkers in Immune Surveillance and Immune Evasion. Int J Mol Sci 2019;20:E4588. [PMID: 31533245 DOI: 10.3390/ijms20184588] [Cited by in Crossref: 41] [Cited by in F6Publishing: 64] [Article Influence: 13.7] [Reference Citation Analysis]
151 Martine P, Rébé C. Heat Shock Proteins and Inflammasomes. Int J Mol Sci 2019;20:E4508. [PMID: 31547225 DOI: 10.3390/ijms20184508] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 6.7] [Reference Citation Analysis]
152 Lyon MS, Milligan C. Extracellular heat shock proteins in neurodegenerative diseases: New perspectives. Neurosci Lett 2019;711:134462. [PMID: 31476356 DOI: 10.1016/j.neulet.2019.134462] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
153 Vulczak A, Catalão CHR, Freitas LAP, Rocha MJA. HSP-Target of Therapeutic Agents in Sepsis Treatment. Int J Mol Sci 2019;20:E4255. [PMID: 31480313 DOI: 10.3390/ijms20174255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
154 Hoter A, Rizk S, Naim HY. The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer. Cancers (Basel) 2019;11:E1194. [PMID: 31426412 DOI: 10.3390/cancers11081194] [Cited by in Crossref: 17] [Cited by in F6Publishing: 25] [Article Influence: 5.7] [Reference Citation Analysis]
155 Choi SK, Kam H, Kim KY, Park SI, Lee YS. Targeting Heat Shock Protein 27 in Cancer: A Druggable Target for Cancer Treatment? Cancers (Basel) 2019;11:E1195. [PMID: 31426426 DOI: 10.3390/cancers11081195] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
156 Pidddubnyi A, Romaniuk A, Radomychelski IM, Moskalenko Y, A Moskalenko R. Prostate Cancer with Intraluminal Inclusions: the Association of the Immunophenotype with Grade Score. Iran J Pathol 2019;14:212-22. [PMID: 31582998 DOI: 10.30699/ijp.2019.91400.1884] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
157 Ladjimi MT, Labavić D, Guilbert M, Anquez F, Pruvost A, Courtade E, Pfeuty B, Thommen Q. Dynamical thermal dose models and dose time-profile effects. International Journal of Hyperthermia 2019;36:720-8. [DOI: 10.1080/02656736.2019.1633478] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
158 Daniyan MO, Przyborski JM, Shonhai A. Partners in Mischief: Functional Networks of Heat Shock Proteins of Plasmodium falciparum and Their Influence on Parasite Virulence. Biomolecules 2019;9:E295. [PMID: 31340488 DOI: 10.3390/biom9070295] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
159 Siebert C, Ciato D, Murakami M, Frei-Stuber L, Perez-Rivas LG, Monteserin-Garcia JL, Nölting S, Maurer J, Feuchtinger A, Walch AK, Haak HR, Bertherat J, Mannelli M, Fassnacht M, Korpershoek E, Reincke M, Stalla GK, Hantel C, Beuschlein F. Heat Shock Protein 90 as a Prognostic Marker and Therapeutic Target for Adrenocortical Carcinoma. Front Endocrinol (Lausanne) 2019;10:487. [PMID: 31379752 DOI: 10.3389/fendo.2019.00487] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
160 Toma-jonik A, Vydra N, Janus P, Widłak W. Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction. Cell Oncol 2019;42:579-89. [DOI: 10.1007/s13402-019-00452-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
161 Marchan J. In silico identification of epitopes present in human heat shock proteins (HSPs) overexpressed by tumour cells. J Immunol Methods 2019;471:34-45. [PMID: 31129262 DOI: 10.1016/j.jim.2019.05.005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
162 Chen W, Feng P, Liu T, Jin D. Recent Advances in Machine Learning Methods for Predicting Heat Shock Proteins. CDM 2019;20:224-8. [DOI: 10.2174/1389200219666181031105916] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 19.3] [Reference Citation Analysis]
163 Önay Uçar E, Şengelen A. Resveratrol and siRNA in combination reduces Hsp27 expression and induces caspase-3 activity in human glioblastoma cells. Cell Stress Chaperones 2019;24:763-75. [PMID: 31073903 DOI: 10.1007/s12192-019-01004-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
164 Cho W, Jin X, Pang J, Wang Y, Mivechi NF, Moskophidis D. The Molecular Chaperone Heat Shock Protein 70 Controls Liver Cancer Initiation and Progression by Regulating Adaptive DNA Damage and Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Signaling Pathways. Mol Cell Biol 2019;39:e00391-18. [PMID: 30745413 DOI: 10.1128/MCB.00391-18] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
165 Fishelson Z, Kirschfink M. Complement C5b-9 and Cancer: Mechanisms of Cell Damage, Cancer Counteractions, and Approaches for Intervention. Front Immunol 2019;10:752. [PMID: 31024572 DOI: 10.3389/fimmu.2019.00752] [Cited by in Crossref: 19] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
166 Zhu Y, Liu J, Park J, Rai P, Zhai RG. Subcellular compartmentalization of NAD+ and its role in cancer: A sereNADe of metabolic melodies. Pharmacol Ther 2019;200:27-41. [PMID: 30974124 DOI: 10.1016/j.pharmthera.2019.04.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
167 Yim G, Kang S, Kim YJ, Kim YK, Min DH, Jang H. Hydrothermal Galvanic-Replacement-Tethered Synthesis of Ir-Ag-IrO2 Nanoplates for Computed Tomography-Guided Multiwavelength Potent Thermodynamic Cancer Therapy. ACS Nano 2019;13:3434-47. [PMID: 30860814 DOI: 10.1021/acsnano.8b09516] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
168 Zhong M, Lee GM, Sijbesma E, Ottmann C, Arkin MR. Modulating protein-protein interaction networks in protein homeostasis. Curr Opin Chem Biol 2019;50:55-65. [PMID: 30913483 DOI: 10.1016/j.cbpa.2019.02.012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
169 Conway de Macario E, Yohda M, Macario AJL, Robb FT. Bridging human chaperonopathies and microbial chaperonins. Commun Biol 2019;2:103. [PMID: 30911678 DOI: 10.1038/s42003-019-0318-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
170 Ganly I, Yang L, Giese RA, Hao Y, Nossa CW, Morris LGT, Rosenthal M, Migliacci J, Kelly D, Tseng W, Hu J, Li H, Brown S, Pei Z. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus. Int J Cancer 2019;145:775-84. [PMID: 30671943 DOI: 10.1002/ijc.32152] [Cited by in Crossref: 29] [Cited by in F6Publishing: 47] [Article Influence: 9.7] [Reference Citation Analysis]
171 Hsieh CC, Shen CH. The Potential of Targeting P53 and HSP90 Overcoming Acquired MAPKi-Resistant Melanoma. Curr Treat Options Oncol 2019;20:22. [PMID: 30778775 DOI: 10.1007/s11864-019-0622-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
172 Söderström HK, Kauppi JT, Oksala N, Paavonen T, Krogerus L, Räsänen J, Rantanen T. Overexpression of HSP27 and HSP70 is associated with decreased survival among patients with esophageal adenocarcinoma. World J Clin Cases 2019; 7(3): 260-269 [PMID: 30746368 DOI: 10.12998/wjcc.v7.i3.260] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
173 Zgajnar NR, De Leo SA, Lotufo CM, Erlejman AG, Piwien-Pilipuk G, Galigniana MD. Biological Actions of the Hsp90-binding Immunophilins FKBP51 and FKBP52. Biomolecules 2019;9:E52. [PMID: 30717249 DOI: 10.3390/biom9020052] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
174 Liu Z, Li H, He L, Xiang Y, Tian C, Li C, Tan P, Jing J, Tian Y, Du L, Huang Y, Han L, Li M, Zhou Y. Discovery of Small-Molecule Inhibitors of the HSP90-Calcineurin-NFAT Pathway against Glioblastoma. Cell Chem Biol 2019;26:352-365.e7. [PMID: 30639261 DOI: 10.1016/j.chembiol.2018.11.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
175 Jing Y, Zhang Y, Zhu H, Zhang K, Cai MC, Ma P, Shen P, Zhang Z, Shao M, Wang J, Yu M, Yin X, Zhang M, Hu Y, Chen D, Di W, Wang X, Zhuang G. Hybrid sequencing-based personal full-length transcriptomic analysis implicates proteostatic stress in metastatic ovarian cancer. Oncogene 2019;38:3047-60. [PMID: 30617306 DOI: 10.1038/s41388-018-0644-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
176 Guang MHZ, Kavanagh EL, Dunne LP, Dowling P, Zhang L, Lindsay S, Bazou D, Goh CY, Hanley C, Bianchi G, Anderson KC, O'Gorman P, McCann A. Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis. Cancers (Basel) 2019;11:E66. [PMID: 30634515 DOI: 10.3390/cancers11010066] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
177 Borzì AM, Biondi A, Basile F, Luca S, Vicari ESD, Vacante M. Olive Oil Effects on Colorectal Cancer. Nutrients 2018;11:E32. [PMID: 30583613 DOI: 10.3390/nu11010032] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
178 Liu YH, Liu XM, Wang PC, Yu XX, Miao JK, Liu S, Wang YK, Du ZQ, Yang CX. Heat shock protein 90α couples with the MAPK-signaling pathway to determine meiotic maturation of porcine oocytes. J Anim Sci 2018;96:3358-69. [PMID: 29800308 DOI: 10.1093/jas/sky213] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
179 Latorre V, Mattenberger F, Geller R. Chaperoning the Mononegavirales: Current Knowledge and Future Directions. Viruses 2018;10:E699. [PMID: 30544818 DOI: 10.3390/v10120699] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
180 Hoffmann F, Umbreit C, Krüger T, Pelzel D, Ernst G, Kniemeyer O, Guntinas-Lichius O, Berndt A, von Eggeling F. Identification of Proteomic Markers in Head and Neck Cancer Using MALDI-MS Imaging, LC-MS/MS, and Immunohistochemistry. Proteomics Clin Appl 2019;13:e1700173. [PMID: 30411850 DOI: 10.1002/prca.201700173] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
181 Olotu FA, Munsamy G, Soliman MES. Does Size Really Matter? Probing the Efficacy of Structural Reduction in the Optimization of Bioderived Compounds - A Computational "Proof-of-Concept". Comput Struct Biotechnol J 2018;16:573-86. [PMID: 30546858 DOI: 10.1016/j.csbj.2018.11.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
182 Nguyen MT, Somogyvári M, Sőti C. Hsp90 Stabilizes SIRT1 Orthologs in Mammalian Cells and C. elegans. Int J Mol Sci 2018;19:E3661. [PMID: 30463299 DOI: 10.3390/ijms19113661] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
183 Wang T, Rodina A, Dunphy MP, Corben A, Modi S, Guzman ML, Gewirth DT, Chiosis G. Chaperome heterogeneity and its implications for cancer study and treatment. J Biol Chem 2019;294:2162-79. [PMID: 30409908 DOI: 10.1074/jbc.REV118.002811] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
184 Sharma C, Seo YH. Small Molecule Inhibitors of HSF1-Activated Pathways as Potential Next-Generation Anticancer Therapeutics. Molecules 2018;23:E2757. [PMID: 30356024 DOI: 10.3390/molecules23112757] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
185 Finlayson-trick E, Connors J, Stadnyk A, Van Limbergen J. Regulation of Antimicrobial Pathways by Endogenous Heat Shock Proteins in Gastrointestinal Disorders. GastrointestDisord 2018;1:39-56. [DOI: 10.3390/gidisord1010005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
186 Xia X, Liao Y, Guo Z, Li Y, Jiang L, Zhang F, Huang C, Liu Y, Wang X, Liu N, Liu J, Huang H. Targeting proteasome-associated deubiquitinases as a novel strategy for the treatment of estrogen receptor-positive breast cancer. Oncogenesis 2018;7:75. [PMID: 30250021 DOI: 10.1038/s41389-018-0086-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
187 Pereira CF, Wise HM, Kurian D, Pinto RM, Amorim MJ, Gill AC, Digard P. Effects of mutations in the effector domain of influenza A virus NS1 protein. BMC Res Notes 2018;11:673. [PMID: 30227889 DOI: 10.1186/s13104-018-3779-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
188 Kang B, Wang X, Xu Q, Wu Y, Si X, Jiang D. Effect of 3-nitropropionic acid inducing oxidative stress and apoptosis of granulosa cells in geese. Biosci Rep 2018;38:BSR20180274. [PMID: 30042167 DOI: 10.1042/BSR20180274] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
189 Olotu F, Adeniji E, Agoni C, Bjij I, Khan S, Elrashedy A, Soliman M. An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy. Expert Opin Drug Discov 2018;13:903-18. [PMID: 30207185 DOI: 10.1080/17460441.2018.1516035] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
190 Campanella C, Pace A, Caruso Bavisotto C, Marzullo P, Marino Gammazza A, Buscemi S, Palumbo Piccionello A. Heat Shock Proteins in Alzheimer's Disease: Role and Targeting. Int J Mol Sci 2018;19:E2603. [PMID: 30200516 DOI: 10.3390/ijms19092603] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 12.8] [Reference Citation Analysis]
191 Hoter A, El-Sabban ME, Naim HY. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2018;19:E2560. [PMID: 30158430 DOI: 10.3390/ijms19092560] [Cited by in Crossref: 117] [Cited by in F6Publishing: 172] [Article Influence: 29.3] [Reference Citation Analysis]
192 Sanchala D, Bhatt LK, Pethe P, Shelat R, Kulkarni YA. Anticancer activity of methylene blue via inhibition of heat shock protein 70. Biomed Pharmacother 2018;107:1037-45. [PMID: 30257315 DOI: 10.1016/j.biopha.2018.08.095] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
193 Xie JL, Jarosz DF. Mutations, protein homeostasis, and epigenetic control of genome integrity. DNA Repair (Amst) 2018;71:23-32. [PMID: 30181040 DOI: 10.1016/j.dnarep.2018.08.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
194 Zhang L, Sun L, Hou M, Xu Z, Kang Y, Xue P. A paper-based photothermal array using Parafilm to analyze hyperthermia response of tumour cells under local gradient temperature. Biomed Microdevices 2018;20:68. [PMID: 30094581 DOI: 10.1007/s10544-018-0311-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
195 Laudisi F, Cherubini F, Monteleone G, Stolfi C. STAT3 Interactors as Potential Therapeutic Targets for Cancer Treatment. Int J Mol Sci 2018;19:E1787. [PMID: 29914167 DOI: 10.3390/ijms19061787] [Cited by in Crossref: 56] [Cited by in F6Publishing: 71] [Article Influence: 14.0] [Reference Citation Analysis]
196 Schulz-Heddergott R, Moll UM. Gain-of-Function (GOF) Mutant p53 as Actionable Therapeutic Target. Cancers (Basel) 2018;10:E188. [PMID: 29875343 DOI: 10.3390/cancers10060188] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 13.3] [Reference Citation Analysis]
197 Kudze T, Mendez-Dorantes C, Jalloh CS, McClellan AJ. Evidence for interaction between Hsp90 and the ER membrane complex. Cell Stress Chaperones 2018;23:1101-15. [PMID: 29808299 DOI: 10.1007/s12192-018-0908-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
198 Lissemore JL, Connors E, Liu Y, Qiao L, Yang B, Edgley ML, Flibotte S, Taylor J, Au V, Moerman DG, Maine EM. The Molecular Chaperone HSP90 Promotes Notch Signaling in the Germline of Caenorhabditis elegans. G3 (Bethesda) 2018;8:1535-44. [PMID: 29507057 DOI: 10.1534/g3.118.300551] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
199 Sun H, Cai X, Zhou H, Li X, Du Z, Zou H, Wu J, Xie L, Cheng Y, Xie W, Lu X, Xu L, Chen L, Li E, Wu B. The protein-protein interaction network and clinical significance of heat-shock proteins in esophageal squamous cell carcinoma. Amino Acids 2018;50:685-97. [PMID: 29700654 DOI: 10.1007/s00726-018-2569-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
200 Dwivedi VD, Dwivedi A, Mishra M, Yadava U, Mishra SK. Co-chaperon p23 inhibitors: Identification of anticancer compounds from traditional Chinese medicine database. Gene Reports 2018;10:135-40. [DOI: 10.1016/j.genrep.2017.12.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
201 Falone S, Santini S Jr, Cordone V, Di Emidio G, Tatone C, Cacchio M, Amicarelli F. Extremely Low-Frequency Magnetic Fields and Redox-Responsive Pathways Linked to Cancer Drug Resistance: Insights from Co-Exposure-Based In Vitro Studies. Front Public Health 2018;6:33. [PMID: 29527520 DOI: 10.3389/fpubh.2018.00033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
202 Meher PK, Sahu TK, Gahoi S, Rao AR. ir-HSP: Improved Recognition of Heat Shock Proteins, Their Families and Sub-types Based On g-Spaced Di-peptide Features and Support Vector Machine. Front Genet 2017;8:235. [PMID: 29379521 DOI: 10.3389/fgene.2017.00235] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
203 Stochaj U, Rodríguez Burbano DC, Cooper DR, Kodiha M, Capobianco JA. The effects of lanthanide-doped upconverting nanoparticles on cancer cell biomarkers. Nanoscale 2018;10:14464-71. [DOI: 10.1039/c8nr01451e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]