BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Debele TA, Peng S, Tsai HC. Drug Carrier for Photodynamic Cancer Therapy. Int J Mol Sci 2015;16:22094-136. [PMID: 26389879 DOI: 10.3390/ijms160922094] [Cited by in Crossref: 132] [Cited by in F6Publishing: 110] [Article Influence: 18.9] [Reference Citation Analysis]
Number Citing Articles
1 Staegemann MH, Gräfe S, Gitter B, Achazi K, Quaas E, Haag R, Wiehe A. Hyperbranched Polyglycerol Loaded with (Zinc-)Porphyrins: Photosensitizer Release Under Reductive and Acidic Conditions for Improved Photodynamic Therapy. Biomacromolecules 2018;19:222-38. [DOI: 10.1021/acs.biomac.7b01485] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
2 Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021;13:4447. [PMID: 34503255 DOI: 10.3390/cancers13174447] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Krasilnikova AA, Solovieva AO, Ivanov AA, Trifonova KE, Pozmogova TN, Tsygankova AR, Smolentsev AI, Kretov EI, Sergeevichev DS, Shestopalov MA, Mironov YV, Shestopalov AM, Poveshchenko AF, Shestopalova LV. Comprehensive study of hexarhenium cluster complex Na 4 [{Re 6 Te 8 }(CN) 6 ] – In terms of a new promising luminescent and X-ray contrast agent. Nanomedicine: Nanotechnology, Biology and Medicine 2017;13:755-63. [DOI: 10.1016/j.nano.2016.10.016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 17] [Article Influence: 6.6] [Reference Citation Analysis]
4 Yuan Y, He Y, Bo R, Ma Z, Wang Z, Dong L, Lin TY, Xue X, Li Y. A facile approach to fabricate self-assembled magnetic nanotheranostics for drug delivery and imaging. Nanoscale 2018;10:21634-9. [PMID: 30457141 DOI: 10.1039/c8nr05141k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Debele TA, Mekuria SL, Lin S, Tsai H. Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: application as imaging-guided photosensitizer delivery vehicle in photodynamic therapy. RSC Adv 2016;6:14692-704. [DOI: 10.1039/c5ra25650j] [Cited by in Crossref: 19] [Article Influence: 3.2] [Reference Citation Analysis]
6 Matlou GG, Abrahamse H. Hybrid Inorganic-Organic Core-Shell Nanodrug Systems in Targeted Photodynamic Therapy of Cancer. Pharmaceutics 2021;13:1773. [PMID: 34834188 DOI: 10.3390/pharmaceutics13111773] [Reference Citation Analysis]
7 Ann Kruger C, Abrahamse H. Targeted Photodynamic Therapy as Potential Treatment Modality for the Eradication of Colon Cancer. In: Jeong K, editor. Multidisciplinary Approach for Colorectal Cancer. IntechOpen; 2019. [DOI: 10.5772/intechopen.84760] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
8 Elberskirch L, Le Harzic R, Scheglmann D, Wieland G, Wiehe A, Mathieu-Gaedke M, Golf HRA, von Briesen H, Wagner S. A HET-CAM based vascularized intestine tumor model as a screening platform for nano-formulated photosensitizers. Eur J Pharm Sci 2021;168:106046. [PMID: 34670122 DOI: 10.1016/j.ejps.2021.106046] [Reference Citation Analysis]
9 Debele TA, Wu PC, Wei YF, Chuang JY, Chang KY, Tsai JH, Su WP. Transferrin Modified GSH Sensitive Hyaluronic Acid Derivative Micelle to Deliver HSP90 Inhibitors to Enhance the Therapeutic Efficacy of Brain Cancers. Cancers (Basel) 2021;13:2375. [PMID: 34069106 DOI: 10.3390/cancers13102375] [Reference Citation Analysis]
10 Xin J, Wang S, Wang B, Wang J, Wang J, Zhang L, Xin B, Shen L, Zhang Z, Yao C. AlPcS4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic® F127 nanomicellar drug carriers. Int J Nanomedicine 2018;13:2017-36. [PMID: 29670347 DOI: 10.2147/IJN.S154054] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
11 Shilyagina NY, Peskova NN, Lermontova SA, Brilkina AA, Vodeneev VA, Yakimansky AV, Klapshina LG, Balalaeva IV. Effective delivery of porphyrazine photosensitizers to cancer cells by polymer brush nanocontainers. J Biophoton 2017;10:1189-97. [DOI: 10.1002/jbio.201600212] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
12 Duangrat R, Udomprasert A, Kangsamaksin T. Tetrahedral DNA nanostructures as drug delivery and bioimaging platforms in cancer therapy. Cancer Sci 2020;111:3164-73. [PMID: 32589345 DOI: 10.1111/cas.14548] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
13 Bretin L, Pinon A, Bouramtane S, Ouk C, Richard L, Perrin ML, Chaunavel A, Carrion C, Bregier F, Sol V, Chaleix V, Leger DY, Liagre B. Photodynamic Therapy Activity of New Porphyrin-Xylan-Coated Silica Nanoparticles in Human Colorectal Cancer. Cancers (Basel) 2019;11:E1474. [PMID: 31575052 DOI: 10.3390/cancers11101474] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
14 Akram M, Hussain R. Nanohydrogels: History, Development, and Applications in Drug Delivery. In: Jawaid M, Mohammad F, editors. Nanocellulose and Nanohydrogel Matrices. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. pp. 297-330. [DOI: 10.1002/9783527803835.ch11] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
15 Carvalho JA, da Silva Abreu A, Tedesco AC, Junior MB, Simioni AR. Functionalized photosensitive gelatin nanoparticles for drug delivery application. J Biomater Sci Polym Ed 2019;30:508-25. [PMID: 30776983 DOI: 10.1080/09205063.2019.1580664] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
16 van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017;9:E19. [PMID: 28218708 DOI: 10.3390/cancers9020019] [Cited by in Crossref: 355] [Cited by in F6Publishing: 295] [Article Influence: 71.0] [Reference Citation Analysis]
17 Shang L, Zhou X, Zhang J, Shi Y, Zhong L. Metal Nanoparticles for Photodynamic Therapy: A Potential Treatment for Breast Cancer. Molecules 2021;26:6532. [PMID: 34770941 DOI: 10.3390/molecules26216532] [Reference Citation Analysis]
18 Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020;158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
19 Gomez S, Tsung A, Hu Z. Current Targets and Bioconjugation Strategies in Photodynamic Diagnosis and Therapy of Cancer. Molecules 2020;25:E4964. [PMID: 33121022 DOI: 10.3390/molecules25214964] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
20 Visheratina AK, Purcell-milton F, Gun’ko YK, Orlova A. Circular Dichroism Spectroscopy as a Powerful Tool for Unraveling Assembly of Chiral Nonluminescent Aggregates of Photosensitizer Molecules on Nanoparticle Surfaces. J Phys Chem A 2019;123:8028-35. [DOI: 10.1021/acs.jpca.9b05500] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
21 Karuppusamy S, Hyejin K, Kang HW. Nanoengineered chlorin e6 conjugated with hydrogel for photodynamic therapy on cancer. Colloids Surf B Biointerfaces 2019;181:778-88. [PMID: 31238210 DOI: 10.1016/j.colsurfb.2019.06.040] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
22 Bigliardi PL, Rout B, Pant A, Krishnan-Kutty V, Eberle AN, Srinivas R, Burkett BA, Bigliardi-Qi M. Specific Targeting of Melanotic Cells with Peptide Ligated Photosensitizers for Photodynamic Therapy. Sci Rep 2017;7:15750. [PMID: 29146972 DOI: 10.1038/s41598-017-15142-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
23 Liu W, Chaix A, Gary-Bobo M, Angeletti B, Masion A, Da Silva A, Daurat M, Lichon L, Garcia M, Morère A, El Cheikh K, Durand JO, Cunin F, Auffan M. Stealth Biocompatible Si-Based Nanoparticles for Biomedical Applications. Nanomaterials (Basel) 2017;7:E288. [PMID: 28946628 DOI: 10.3390/nano7100288] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Tsolekile N, Parani S, Matoetoe MC, Songca SP, Oluwafemi OS. Evolution of ternary I–III–VI QDs: Synthesis, characterization and application. Nano-Structures & Nano-Objects 2017;12:46-56. [DOI: 10.1016/j.nanoso.2017.08.012] [Cited by in Crossref: 45] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
25 Syamala PS, Ramesan RM. Thiol redox-sensitive cationic polymers for dual delivery of drug and gene. Ther Deliv 2018;9:751-73. [PMID: 30277132 DOI: 10.4155/tde-2018-0041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
26 Mekuria SL, Debele TA, Tsai H. PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. RSC Adv 2016;6:63761-72. [DOI: 10.1039/c6ra12895e] [Cited by in Crossref: 26] [Article Influence: 4.3] [Reference Citation Analysis]
27 Maździarz A. Successful pregnancy and delivery following selective use of photodynamic therapy in treatment of cervix and vulvar diseases. Photodiagnosis Photodyn Ther 2019;28:65-8. [PMID: 31299392 DOI: 10.1016/j.pdpdt.2019.07.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
28 Hinger D, Navarro F, Käch A, Thomann JS, Mittler F, Couffin AC, Maake C. Photoinduced effects of m-tetrahydroxyphenylchlorin loaded lipid nanoemulsions on multicellular tumor spheroids. J Nanobiotechnology 2016;14:68. [PMID: 27604187 DOI: 10.1186/s12951-016-0221-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
29 Wu PT, Lin CL, Lin CW, Chang NC, Tsai WB, Yu J. Methylene-Blue-Encapsulated Liposomes as Photodynamic Therapy Nano Agents for Breast Cancer Cells. Nanomaterials (Basel) 2018;9:E14. [PMID: 30583581 DOI: 10.3390/nano9010014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
30 Alsaab HO, Alghamdi MS, Alotaibi AS, Alzhrani R, Alwuthaynani F, Althobaiti YS, Almalki AH, Sau S, Iyer AK. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers (Basel) 2020;12:E2793. [PMID: 33003374 DOI: 10.3390/cancers12102793] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
31 Lin S, Liu C, Han X, Zhong H, Cheng C. Viral Nanoparticle System: An Effective Platform for Photodynamic Therapy. Int J Mol Sci 2021;22:1728. [PMID: 33572365 DOI: 10.3390/ijms22041728] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Isaac-Lam MF, Hammonds DM. Biotinylated Chlorin and Its Zinc and Indium Complexes: Synthesis and In Vitro Biological Evaluation for Photodynamic Therapy. Pharmaceuticals (Basel) 2017;10:E41. [PMID: 28420143 DOI: 10.3390/ph10020041] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
33 R Mokoena D, P George B, Abrahamse H. Enhancing Breast Cancer Treatment Using a Combination of Cannabidiol and Gold Nanoparticles for Photodynamic Therapy. Int J Mol Sci 2019;20:E4771. [PMID: 31561450 DOI: 10.3390/ijms20194771] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
34 Kauscher U, Holme MN, Björnmalm M, Stevens MM. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv Drug Deliv Rev 2019;138:259-75. [PMID: 30947810 DOI: 10.1016/j.addr.2018.10.012] [Cited by in Crossref: 69] [Cited by in F6Publishing: 50] [Article Influence: 17.3] [Reference Citation Analysis]
35 Jia Y, Li J, Chen J, Hu P, Jiang L, Chen X, Huang M, Chen Z, Xu P. Smart Photosensitizer: Tumor-Triggered Oncotherapy by Self-Assembly Photodynamic Nanodots. ACS Appl Mater Interfaces 2018;10:15369-80. [PMID: 29652473 DOI: 10.1021/acsami.7b19058] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
36 Wang Q, Suo Y, Wang X, Wang Y, Tian X, Gao Y, Liu N, Liu R. Study on the mechanism of photodynamic therapy mediated by 5-aminoketovalerate in human ovarian cancer cell line. Lasers Med Sci 2021. [PMID: 33392781 DOI: 10.1007/s10103-020-03226-5] [Reference Citation Analysis]
37 Yu SH, Patra M, Ferrari S, Ramirez Garcia P, Veldhuis NA, Kaminskas LM, Graham B, Quinn JF, Whittaker MR, Gasser G, Davis TP. Linker chemistry dictates the delivery of a phototoxic organometallic rhenium(i) complex to human cervical cancer cells from core crosslinked star polymer nanoparticles. J Mater Chem B 2018;6:7805-10. [PMID: 32255026 DOI: 10.1039/c8tb02464b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
38 Wang Y, Zhang Y, Jin M, Lv Y, Pei Z, Pei Y. A Hypericin Delivery System Based on Polydopamine Coated Cerium Oxide Nanorods for Targeted Photodynamic Therapy. Polymers (Basel) 2019;11:E1025. [PMID: 31185679 DOI: 10.3390/polym11061025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
39 Sebak AA, Gomaa IEO, Elmeshad AN, Abdelkader MH. Targeted photodynamic-induced singlet oxygen production by peptide-conjugated biodegradable nanoparticles for treatment of skin melanoma. Photodiagnosis and Photodynamic Therapy 2018;23:181-9. [DOI: 10.1016/j.pdpdt.2018.05.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
40 Li H, Liu C, Zeng YP, Hao YH, Huang JW, Yang ZY, Li R. Nanoceria-Mediated Drug Delivery for Targeted Photodynamic Therapy on Drug-Resistant Breast Cancer. ACS Appl Mater Interfaces 2016;8:31510-23. [PMID: 27933980 DOI: 10.1021/acsami.6b07338] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 9.8] [Reference Citation Analysis]
41 Tsolekile N, Ncapayi V, Parani S, Sakho EHM, Matoetoe MC, Songca SP, Oluwafemi OS. Synthesis of fluorescent CulnS2/ZnS quantum dots—porphyrin conjugates for photodynamic therapy. MRS Communications 2018;8:398-403. [DOI: 10.1557/mrc.2018.60] [Cited by in Crossref: 10] [Article Influence: 2.5] [Reference Citation Analysis]
42 Liu H, Yang F, Chen W, Gong T, Zhou Y, Dai X, Leung W, Xu C. Enzyme-Responsive Materials as Carriers for Improving Photodynamic Therapy. Front Chem 2021;9:763057. [PMID: 34796163 DOI: 10.3389/fchem.2021.763057] [Reference Citation Analysis]
43 Bouramtane S, Bretin L, Pinon A, Leger D, Liagre B, Richard L, Brégier F, Sol V, Chaleix V. Porphyrin-xylan-coated silica nanoparticles for anticancer photodynamic therapy. Carbohydrate Polymers 2019;213:168-75. [DOI: 10.1016/j.carbpol.2019.02.070] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
44 Yan J, Gao T, Lu Z, Yin J, Zhang Y, Pei R. Aptamer-Targeted Photodynamic Platforms for Tumor Therapy. ACS Appl Mater Interfaces 2021;13:27749-73. [PMID: 34110790 DOI: 10.1021/acsami.1c06818] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Yakavets I, Millard M, Zorin V, Lassalle HP, Bezdetnaya L. Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. J Control Release 2019;304:268-87. [PMID: 31136810 DOI: 10.1016/j.jconrel.2019.05.035] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 9.3] [Reference Citation Analysis]
46 Debele TA, Mekuria SL, Tsai H. A pH-sensitive micelle composed of heparin, phospholipids, and histidine as the carrier of photosensitizers: Application to enhance photodynamic therapy of cancer. International Journal of Biological Macromolecules 2017;98:125-38. [DOI: 10.1016/j.ijbiomac.2017.01.103] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
47 Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. Beilstein J Nanotechnol 2020;11:180-212. [PMID: 32082960 DOI: 10.3762/bjnano.11.15] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
48 Baldea I, Giurgiu L, Teacoe ID, Olteanu DE, Olteanu FC, Clichici S, Filip GA. Photodynamic Therapy in Melanoma - Where do we Stand? Curr Med Chem 2018;25:5540-63. [PMID: 29278205 DOI: 10.2174/0929867325666171226115626] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
49 Mion G, Mari C, Da ros T, Rubbiani R, Gasser G, Gianferrara T. Towards the Synthesis of New Tumor Targeting Photosensitizers for Photodynamic Therapy and Imaging Applications. ChemistrySelect 2017;2:190-200. [DOI: 10.1002/slct.201601960] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.2] [Reference Citation Analysis]
50 Krasnopeeva EL, Melenevskaya EY, Klapshina LG, Shilyagina NY, Balalaeva IV, Smirnov NN, Smirnov MA, Yakimansky AV. Poly(methacrylic Acid)-Cellulose Brushes as Anticancer Porphyrazine Carrier. Nanomaterials (Basel) 2021;11:1997. [PMID: 34443825 DOI: 10.3390/nano11081997] [Reference Citation Analysis]
51 Goto PL, Siqueira-Moura MP, Tedesco AC. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells. Int J Pharm 2017;518:228-41. [PMID: 28063902 DOI: 10.1016/j.ijpharm.2017.01.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
52 Silindir-Gunay M, Sarcan ET, Ozer AY. Near-infrared imaging of diseases: A nanocarrier approach. Drug Dev Res 2019. [PMID: 30893508 DOI: 10.1002/ddr.21532] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
53 Corbi-Verge C, Kim PM. Motif mediated protein-protein interactions as drug targets. Cell Commun Signal 2016;14:8. [PMID: 26936767 DOI: 10.1186/s12964-016-0131-4] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
54 Mekonnen TW, Birhan YS, Andrgie AT, Hanurry EY, Darge HF, Chou HY, Lai JY, Tsai HC, Yang JM, Chang YH. Encapsulation of gadolinium ferrite nanoparticle in generation 4.5 poly(amidoamine) dendrimer for cancer theranostics applications using low frequency alternating magnetic field. Colloids Surf B Biointerfaces 2019;184:110531. [PMID: 31590053 DOI: 10.1016/j.colsurfb.2019.110531] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
55 Robinson-Duggon J, Pizarro N, Gunther G, Zúñiga-Núñez D, Edwards AM, Greer A, Fuentealba D. Fatty Acid Conjugates of Toluidine Blue O as Amphiphilic Photosensitizers: Synthesis, Solubility, Photophysics and Photochemical Properties. Photochem Photobiol 2021;97:71-9. [PMID: 32619275 DOI: 10.1111/php.13304] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Liu CP, Wu TH, Liu CY, Chen KC, Chen YX, Chen GS, Lin SY. Self-Supplying O2 through the Catalase-Like Activity of Gold Nanoclusters for Photodynamic Therapy against Hypoxic Cancer Cells. Small 2017;13. [PMID: 28509427 DOI: 10.1002/smll.201700278] [Cited by in Crossref: 112] [Cited by in F6Publishing: 103] [Article Influence: 22.4] [Reference Citation Analysis]
57 Oniszczuk A, Wojtunik-Kulesza KA, Oniszczuk T, Kasprzak K. The potential of photodynamic therapy (PDT)-Experimental investigations and clinical use. Biomed Pharmacother 2016;83:912-29. [PMID: 27522005 DOI: 10.1016/j.biopha.2016.07.058] [Cited by in Crossref: 96] [Cited by in F6Publishing: 78] [Article Influence: 16.0] [Reference Citation Analysis]
58 Zhang S, Wang Y, Kong Z, Zhang X, Sun B, Yu H, Chen Q, Luo C, Sun J, He Z. Pure photosensitizer-driven nanoassembly with core-matched PEGylation for imaging-guided photodynamic therapy. Acta Pharm Sin B 2021;11:3636-47. [PMID: 34900542 DOI: 10.1016/j.apsb.2021.04.005] [Reference Citation Analysis]
59 Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018;23:E826. [PMID: 29617302 DOI: 10.3390/molecules23040826] [Cited by in Crossref: 88] [Cited by in F6Publishing: 61] [Article Influence: 22.0] [Reference Citation Analysis]
60 Brezaniova I, Trousil J, Cernochova Z, Kral V, Hruby M, Stepanek P, Slouf M. Self-assembled chitosan-alginate polyplex nanoparticles containing temoporfin. Colloid Polym Sci 2017;295:1259-70. [DOI: 10.1007/s00396-016-3992-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.6] [Reference Citation Analysis]
61 Li K, Qiu L, Liu Q, Lv G, Zhao X, Wang S, Lin J. Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy. J Photochem Photobiol B 2017;174:243-50. [PMID: 28802175 DOI: 10.1016/j.jphotobiol.2017.08.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 5.4] [Reference Citation Analysis]
62 Mari C, Huang H, Rubbiani R, Schulze M, Würthner F, Chao H, Gasser G. Evaluation of Perylene Bisimide-Based Ru II and Ir III Complexes as Photosensitizers for Photodynamic Therapy: Evaluation of Perylene Bisimide-Based Ru II and Ir III Complexes as Photosensitizers for Photodynamic Therapy. Eur J Inorg Chem 2017;2017:1745-52. [DOI: 10.1002/ejic.201600516] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
63 Doustvandi MA, Mohammadnejad F, Mansoori B, Mohammadi A, Navaeipour F, Baradaran B, Tajalli H. The interaction between the light source dose and caspase-dependent and -independent apoptosis in human SK-MEL-3 skin cancer cells following photodynamic therapy with zinc phthalocyanine: A comparative study. J Photochem Photobiol B. 2017;176:62-68. [PMID: 28964887 DOI: 10.1016/j.jphotobiol.2017.09.020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
64 Li ZH, Li YY, Hou M, Yang T, Lu LC, Xu XY. Topically applied hypericin exhibits skin penetrability on nude mice. Lasers Med Sci 2018;33:1279-86. [PMID: 29915976 DOI: 10.1007/s10103-018-2479-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
65 Kharroubi Lakouas D, Huglo D, Mordon S, Vermandel M. Nuclear medicine for photodynamic therapy in cancer: Planning, monitoring and nuclear PDT. Photodiagnosis Photodyn Ther 2017;18:236-43. [PMID: 28300723 DOI: 10.1016/j.pdpdt.2017.03.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
66 Debele TA, Mekuria SL, Tsai H. Synthesis and characterization of redox-sensitive heparin-β-sitosterol micelles: Their application as carriers for the pharmaceutical agent, doxorubicin, and investigation of their antimetastatic activities in vitro. Materials Science and Engineering: C 2017;75:1326-38. [DOI: 10.1016/j.msec.2017.03.052] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
67 Gaschard M, Nehzat F, Cheminel T, Therrien B. Arene Ruthenium Metalla-Assemblies with Anthracene Moieties for PDT Applications. Inorganics 2018;6:97. [DOI: 10.3390/inorganics6030097] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
68 Lu TY, Lu WF, Wang YH, Liao MY, Wei Y, Fan YJ, Chuang EY, Yu J. Keratin-Based Nanoparticles with Tumor-Targeting and Cascade Catalytic Capabilities for the Combinational Oxidation Phototherapy of Breast Cancer. ACS Appl Mater Interfaces 2021;13:38074-89. [PMID: 34351754 DOI: 10.1021/acsami.1c10160] [Reference Citation Analysis]
69 Debele TA, Su W. Polysaccharide and protein-based functional wound dressing materials and applications. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2020.1809403] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
70 Ben Mihoub A, Larue L, Moussaron A, Youssef Z, Colombeau L, Baros F, Frochot C, Vanderesse R, Acherar S. Use of Cyclodextrins in Anticancer Photodynamic Therapy Treatment. Molecules 2018;23:E1936. [PMID: 30072672 DOI: 10.3390/molecules23081936] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
71 Lee DJ, Juvekar V, Lee HW, Kim ES, Noh CK, Shin SJ, Kim HM. Cancer-Targeted Azo Dye for Two-Photon Photodynamic Therapy in Human Colon Tissue. Anal Chem 2021;93:16821-7. [PMID: 34886662 DOI: 10.1021/acs.analchem.1c03429] [Reference Citation Analysis]
72 Dinakaran D, Sengupta J, Pink D, Raturi A, Chen H, Usmani N, Kumar P, Lewis JD, Narain R, Moore RB. PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy. Acta Biomaterialia 2020;117:335-48. [DOI: 10.1016/j.actbio.2020.09.029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Abrahamse H, Kruger CA, Kadanyo S, Mishra A. Nanoparticles for Advanced Photodynamic Therapy of Cancer. Photomedicine and Laser Surgery 2017;35:581-8. [DOI: 10.1089/pho.2017.4308] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
74 Sadraeian M, da Cruz EF, Boyle RW, Bahou C, Chudasama V, Janini LMR, Diaz RS, Guimarães FEG. Photoinduced Photosensitizer-Antibody Conjugates Kill HIV Env-Expressing Cells, Also Inactivating HIV. ACS Omega 2021;6:16524-34. [PMID: 34235324 DOI: 10.1021/acsomega.1c01721] [Reference Citation Analysis]
75 Chen J, Jin X, Shen Z, Mei Y, Zhu J, Zhang X, Liang G, Zheng X. H2O2 enhances the anticancer activity of TMPyP4 by ROS-mediated mitochondrial dysfunction and DNA damage. Med Oncol 2021;38:59. [PMID: 33880669 DOI: 10.1007/s12032-021-01505-x] [Reference Citation Analysis]
76 Boccalini G, Conti L, Montis C, Bani D, Bencini A, Berti D, Giorgi C, Mengoni A, Valtancoli B. Methylene blue-containing liposomes as new photodynamic anti-bacterial agents. J Mater Chem B 2017;5:2788-97. [DOI: 10.1039/c6tb03367a] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 3.8] [Reference Citation Analysis]
77 Ouyang M, Zeng L, Qiu K, Chen Y, Ji L, Chao H. Cyclometalated Ir III Complexes as Mitochondria-Targeted Photodynamic Anticancer Agents: Cyclometalated Ir III Complexes as Mitochondria-Targeted Photodynamic Anticancer Agents. Eur J Inorg Chem 2017;2017:1764-71. [DOI: 10.1002/ejic.201601129] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
78 [DOI: 10.1101/035113] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Cacaccio J, Durrani F, Cheruku RR, Borah B, Ethirajan M, Tabaczynski W, Pera P, Missert JR, Pandey RK. Pluronic F-127: An Efficient Delivery Vehicle for 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH or Photochlor). Photochem Photobiol 2020;96:625-35. [PMID: 31738460 DOI: 10.1111/php.13183] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
80 Chełminiak-Dudkiewicz D, Ziegler-Borowska M, Stolarska M, Sobotta L, Falkowski M, Mielcarek J, Goslinski T, Kowalonek J, Węgrzynowska-Drzymalska K, Kaczmarek H. The chitosan - Porphyrazine hybrid materials and their photochemical properties. J Photochem Photobiol B 2018;181:1-13. [PMID: 29482031 DOI: 10.1016/j.jphotobiol.2018.02.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
81 Mansoori B, Mohammadi A, Amin Doustvandi M, Mohammadnejad F, Kamari F, Gjerstorff MF, Baradaran B, Hamblin MR. Photodynamic therapy for cancer: Role of natural products. Photodiagnosis Photodyn Ther 2019;26:395-404. [PMID: 31063860 DOI: 10.1016/j.pdpdt.2019.04.033] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 13.3] [Reference Citation Analysis]
82 Yudintsev AV, Shilyagina NY, Dyakova DV, Lermontova SA, Klapshina LG, Guryev EL, Balalaeva IV, Vodeneev VA. Liposomal Form of Tetra(Aryl)Tetracyanoporphyrazine: Physical Properties and Photodynamic Activity In Vitro. J Fluoresc 2018;28:513-22. [DOI: 10.1007/s10895-018-2212-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
83 Vázquez-hernández F, Granada-ramírez D, Arias-cerón J, Rodriguez-fragoso P, Mendoza-álvarez J, Ramón-gallegos E, Cruz-orea A, Luna-arias J. Use of nanostructured materials in drug delivery. Nanobiomaterials. Elsevier; 2018. pp. 503-49. [DOI: 10.1016/b978-0-08-100716-7.00020-9] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
84 Battistin F, Balducci G, Wei J, Renfrew AK, Alessio E. Photolabile Ru Model Complexes with Chelating Diimine Ligands for Light‐Triggered Drug Release. Eur J Inorg Chem 2018;2018:1469-80. [DOI: 10.1002/ejic.201701392] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
85 Zong J, Peng H, Qing X, Fan Z, Xu W, Du X, Shi R, Zhang Y. pH-Responsive Pluronic F127-Lenvatinib-Encapsulated Halogenated Boron-Dipyrromethene Nanoparticles for Combined Photodynamic Therapy and Chemotherapy of Liver Cancer. ACS Omega 2021;6:12331-42. [PMID: 34056385 DOI: 10.1021/acsomega.1c01346] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Tsolekile N, Nahle S, Zikalala N, Parani S, Sakho EHM, Joubert O, Matoetoe MC, Songca SP, Oluwafemi OS. Cytotoxicity, fluorescence tagging and gene-expression study of CuInS/ZnS QDS - meso (hydroxyphenyl) porphyrin conjugate against human monocytic leukemia cells. Sci Rep 2020;10:4936. [PMID: 32188925 DOI: 10.1038/s41598-020-61881-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
87 Uzdensky AB. The biophysical aspects of photodynamic therapy. BIOPHYSICS 2016;61:461-9. [DOI: 10.1134/s0006350916030192] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
88 Debele TA, Yeh CF, Su WP. Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators. Cancers (Basel) 2020;12:E3773. [PMID: 33333816 DOI: 10.3390/cancers12123773] [Reference Citation Analysis]
89 Savoie H, Figliola C, Marchal E, Crabbe BW, Hallett-Tapley GL, Boyle RW, Thompson A. Photo-induced anticancer activity and singlet oxygen production of prodigiosenes. Photochem Photobiol Sci 2018;17:599-606. [PMID: 29648558 DOI: 10.1039/c8pp00060c] [Reference Citation Analysis]
90 Banerjee AN. Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus 2018;8:20170056. [PMID: 29696088 DOI: 10.1098/rsfs.2017.0056] [Cited by in Crossref: 64] [Cited by in F6Publishing: 36] [Article Influence: 16.0] [Reference Citation Analysis]
91 Sun J, Kormakov S, Liu Y, Huang Y, Wu D, Yang Z. Recent Progress in Metal-Based Nanoparticles Mediated Photodynamic Therapy. Molecules 2018;23:E1704. [PMID: 30002333 DOI: 10.3390/molecules23071704] [Cited by in Crossref: 39] [Cited by in F6Publishing: 17] [Article Influence: 9.8] [Reference Citation Analysis]
92 Costa LD, e Silva Jde A, Fonseca SM, Arranja CT, Urbano AM, Sobral AJ. Photophysical Characterization and in Vitro Phototoxicity Evaluation of 5,10,15,20-Tetra(quinolin-2-yl)porphyrin as a Potential Sensitizer for Photodynamic Therapy. Molecules 2016;21:439. [PMID: 27043519 DOI: 10.3390/molecules21040439] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
93 Sarcan ET, Silindir-gunay M, Ozer AY. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. International Journal of Pharmaceutics 2018;551:329-38. [DOI: 10.1016/j.ijpharm.2018.09.019] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
94 Ji Y, Zhao J, Chu CC. Biodegradable nanocomplex from hyaluronic acid and arginine based poly(ester amide)s as the delivery vehicles for improved photodynamic therapy of multidrug resistant tumor cells: An in vitro study of the performance of chlorin e6 photosensitizer. J Biomed Mater Res A 2017;105:1487-99. [PMID: 27997760 DOI: 10.1002/jbm.a.35982] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
95 Jornada DH, dos Santos Fernandes GF, Chiba DE, de Melo TR, dos Santos JL, Chung MC. The Prodrug Approach: A Successful Tool for Improving Drug Solubility. Molecules 2015;21:42. [PMID: 26729077 DOI: 10.3390/molecules21010042] [Cited by in Crossref: 92] [Cited by in F6Publishing: 70] [Article Influence: 13.1] [Reference Citation Analysis]
96 Fuse T, Tagami T, Tane M, Ozeki T. Effective light-triggered contents release from helper lipid-incorporated liposomes co-encapsulating gemcitabine and a water-soluble photosensitizer. Int J Pharm 2018;540:50-6. [PMID: 29410222 DOI: 10.1016/j.ijpharm.2018.01.040] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
97 Xie J, Wang Y, Choi W, Jangili P, Ge Y, Xu Y, Kang J, Liu L, Zhang B, Xie Z, He J, Xie N, Nie G, Zhang H, Kim JS. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021;50:9152-201. [PMID: 34223847 DOI: 10.1039/d0cs01370f] [Reference Citation Analysis]
98 Hong X, Xu X, Liu Z, Liu S, Yu J, Wu M, Ma Y, Shuai Q. Hyaluronan-fullerene/AIEgen nanogel as CD44-targeted delivery of tirapazamine for synergistic photodynamic-hypoxia activated therapy. Nanotechnology 2021;32. [PMID: 34325415 DOI: 10.1088/1361-6528/ac18da] [Reference Citation Analysis]
99 Michy T, Massias T, Bernard C, Vanwonterghem L, Henry M, Guidetti M, Royal G, Coll JL, Texier I, Josserand V, Hurbin AA. Verteporfin-Loaded Lipid Nanoparticles Improve Ovarian Cancer Photodynamic Therapy In Vitro and In Vivo. Cancers (Basel) 2019;11:E1760. [PMID: 31717427 DOI: 10.3390/cancers11111760] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
100 Žárská L, Malá Z, Langová K, Malina L, Binder S, Bajgar R, Kolářová H. The effect of two porphyrine photosensitizers TMPyP and ZnTPPS4 for application in photodynamic therapy of cancer cells in vitro. Photodiagnosis Photodyn Ther 2021;34:102224. [PMID: 33609757 DOI: 10.1016/j.pdpdt.2021.102224] [Reference Citation Analysis]
101 Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021;22:11354. [PMID: 34768789 DOI: 10.3390/ijms222111354] [Reference Citation Analysis]
102 Fahmy SA, Azzazy HME, Schaefer J. Liposome Photosensitizer Formulations for Effective Cancer Photodynamic Therapy. Pharmaceutics 2021;13:1345. [PMID: 34575424 DOI: 10.3390/pharmaceutics13091345] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Robinson-Duggon J, McTiernan CD, Muñoz M, Guerra D, Escobar Álvarez E, Andrade-Villalobos F, Fierro A, Edwards AM, Alarcon EI, Fuentealba D. Biosupramolecular complexes of amphiphilic photosensitizers with human serum albumin and cucurbit[7]uril as carriers for photodynamic therapy. J Photochem Photobiol B 2021;223:112284. [PMID: 34450362 DOI: 10.1016/j.jphotobiol.2021.112284] [Reference Citation Analysis]
104 Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020;28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186X.2020.1766474] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
105 Glass S, Rüdiger T, Griebel J, Abel B, Schulze A. Uptake and release of photosensitizers in a hydrogel for applications in photodynamic therapy: the impact of structural parameters on intrapolymer transport dynamics. RSC Adv 2018;8:41624-32. [DOI: 10.1039/c8ra08093c] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
106 Mazzilli MRF, Ambrósio JAR, da Silva Godoy D, da Silva Abreu A, Carvalho JA, Junior MB, Simioni AR. Polyelectrolytic BSA nanoparticles containing silicon dihydroxide phthalocyanine as a promising candidate for drug delivery systems for anticancer photodynamic therapy. J Biomater Sci Polym Ed 2020;31:1457-74. [PMID: 32326844 DOI: 10.1080/09205063.2020.1760702] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
107 Barras A, Skandrani N, Gonzalez Pisfil M, Paryzhak S, Dumych T, Haustrate A, Héliot L, Gharbi T, Boulahdour H, Lehen'kyi V, Bilyy R, Szunerits S, Bidaux G, Boukherroub R. Improved photodynamic effect through encapsulation of two photosensitizers in lipid nanocapsules. J Mater Chem B 2018;6:5949-63. [PMID: 32254715 DOI: 10.1039/c8tb01759j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
108 Kabanov V, Press DJ, Huynh RPS, Shimizu GKH, Heyne B. Assessment of encapsulated dyes’ distribution in silica nanoparticles and their ability to release useful singlet oxygen. Chem Commun 2018;54:6320-3. [DOI: 10.1039/c8cc03413c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
109 Rui L, Cao H, Xue Y, Liu L, Xu L, Gao Y, Zhang W. Functional organic nanoparticles for photodynamic therapy. Chinese Chemical Letters 2016;27:1412-20. [DOI: 10.1016/j.cclet.2016.07.011] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
110 Debele TA, Mekuria SL, Tsai H. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Materials Science and Engineering: C 2016;68:964-81. [DOI: 10.1016/j.msec.2016.05.121] [Cited by in Crossref: 130] [Cited by in F6Publishing: 89] [Article Influence: 21.7] [Reference Citation Analysis]
111 Cantelli A, Malferrari M, Soldà A, Simonetti G, Forni S, Toscanella E, Mattioli EJ, Zerbetto F, Zanelli A, Di Giosia M, Zangoli M, Barbarella G, Rapino S, Di Maria F, Calvaresi M. Human Serum Albumin-Oligothiophene Bioconjugate: A Phototheranostic Platform for Localized Killing of Cancer Cells by Precise Light Activation. JACS Au 2021;1:925-35. [PMID: 34467339 DOI: 10.1021/jacsau.1c00061] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
112 Nompumelelo Simelane NW, Kruger CA, Abrahamse H. Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo. RSC Adv 2020;10:41560-76. [DOI: 10.1039/d0ra08617g] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
113 Liu R, Gao Y, Liu N, Suo Y. Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagnosis Photodyn Ther 2021;33:102156. [PMID: 33352314 DOI: 10.1016/j.pdpdt.2020.102156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
114 Purushothaman B, Choi J, Park S, Lee J, Samson AAS, Hong S, Song JM. Biotin-conjugated PEGylated porphyrin self-assembled nanoparticles co-targeting mitochondria and lysosomes for advanced chemo-photodynamic combination therapy. J Mater Chem B 2019;7:65-79. [DOI: 10.1039/c8tb01923a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 6] [Article Influence: 9.3] [Reference Citation Analysis]
115 Li K, Dong W, Miao Y, Liu Q, Qiu L, Lin J. Dual-targeted 5-aminolevulinic acid derivatives with glutathione depletion function for enhanced photodynamic therapy. J Photochem Photobiol B 2021;215:112107. [PMID: 33401190 DOI: 10.1016/j.jphotobiol.2020.112107] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Kruger CA, Abrahamse H. Utilisation of Targeted Nanoparticle Photosensitiser Drug Delivery Systems for the Enhancement of Photodynamic Therapy. Molecules 2018;23:E2628. [PMID: 30322132 DOI: 10.3390/molecules23102628] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
117 Yang X, Shi X, Ji J, Zhai G. Development of redox-responsive theranostic nanoparticles for near-infrared fluorescence imaging-guided photodynamic/chemotherapy of tumor. Drug Deliv 2018;25:780-96. [PMID: 29542333 DOI: 10.1080/10717544.2018.1451571] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
118 Moret F, Reddi E. Strategies for optimizing the delivery to tumors of macrocyclic photosensitizers used in photodynamic therapy (PDT). J Porphyrins Phthalocyanines 2017;21:239-56. [DOI: 10.1142/s1088424617300014] [Cited by in Crossref: 52] [Article Influence: 10.4] [Reference Citation Analysis]
119 Wieczorek E, Mlynarczyk DT, Kucinska M, Dlugaszewska J, Piskorz J, Popenda L, Szczolko W, Jurga S, Murias M, Mielcarek J, Goslinski T. Photophysical properties and photocytotoxicity of free and liposome-entrapped diazepinoporphyrazines on LNCaP cells under normoxic and hypoxic conditions. Eur J Med Chem 2018;150:64-73. [PMID: 29524729 DOI: 10.1016/j.ejmech.2018.02.064] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
120 Matsumoto J, Kai Y, Yokoi H, Okazaki S, Yasuda M. Assistance of human serum albumin to photo-sensitized inactivation of Saccharomyces cerevisiae with axially pyridinio-bonded P-porphyrins. Journal of Photochemistry and Photobiology B: Biology 2016;161:279-83. [DOI: 10.1016/j.jphotobiol.2016.05.024] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
121 Shan D, Gerhard E, Zhang C, Tierney JW, Xie D, Liu Z, Yang J. Polymeric biomaterials for biophotonic applications. Bioact Mater 2018;3:434-45. [PMID: 30151431 DOI: 10.1016/j.bioactmat.2018.07.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
122 Ibarra LE, Porcal GV, Macor LP, Ponzio RA, Spada RM, Lorente C, Chesta CA, Rivarola VA, Palacios RE. Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells. Nanomedicine 2018;13:605-24. [DOI: 10.2217/nnm-2017-0292] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
123 Appold M, Mari C, Lederle C, Elbert J, Schmidt C, Ott I, Stühn B, Gasser G, Gallei M. Multi-stimuli responsive block copolymers as a smart release platform for a polypyridyl ruthenium complex. Polym Chem 2017;8:890-900. [DOI: 10.1039/c6py02026g] [Cited by in Crossref: 26] [Cited by in F6Publishing: 1] [Article Influence: 5.2] [Reference Citation Analysis]