BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Iannitelli A, Grande R, Di Stefano A, Di Giulio M, Sozio P, Bessa LJ, Laserra S, Paolini C, Protasi F, Cellini L. Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int J Mol Sci 2011;12:5039-51. [PMID: 21954343 DOI: 10.3390/ijms12085039] [Cited by in Crossref: 96] [Cited by in F6Publishing: 80] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Di Profio P, Germani R, Fontana A, Canale V. Surface charge modulation of sulfobetaine micelles by interaction with different anions: A dynamic light scattering study. Journal of Molecular Liquids 2019;278:650-7. [DOI: 10.1016/j.molliq.2019.01.075] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
2 Chandar B, Bhattacharya D. Role of Natural Product in Modulation of Drug Transporters and New Delhi Metallo-β Lactamases. Curr Top Med Chem 2019;19:874-85. [PMID: 30987566 DOI: 10.2174/1871529X19666190415110724] [Reference Citation Analysis]
3 Niza E, Božik M, Bravo I, Clemente-casares P, Lara-sanchez A, Juan A, Klouček P, Alonso-moreno C. PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol. Food Chemistry 2020;328:127131. [DOI: 10.1016/j.foodchem.2020.127131] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
4 Al Mohajer M, Darouiche RO. The expanding horizon of prosthetic joint infections. J Appl Biomater Funct Mater 2014;12:1-12. [PMID: 24829043 DOI: 10.5301/jabfm.5000202] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
5 Pourtalebi Jahromi L, Ghazali M, Ashrafi H, Azadi A. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon 2020;6:e03451. [PMID: 32140583 DOI: 10.1016/j.heliyon.2020.e03451] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 9.5] [Reference Citation Analysis]
6 Cetin Babaoglu H, Bayrak A, Ozdemir N, Ozgun N. Encapsulation of clove essential oil in hydroxypropyl beta-cyclodextrin for characterization, controlled release, and antioxidant activity. Journal of Food Processing and Preservation 2017;41:e13202. [DOI: 10.1111/jfpp.13202] [Cited by in Crossref: 34] [Cited by in F6Publishing: 22] [Article Influence: 6.8] [Reference Citation Analysis]
7 Sun X, Cameron RG, Bai J. Microencapsulation and antimicrobial activity of carvacrol in a pectin-alginate matrix. Food Hydrocolloids 2019;92:69-73. [DOI: 10.1016/j.foodhyd.2019.01.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
8 Marinelli L, Cacciatore I, Eusepi P, Di Biase G, Morroni G, Cirioni O, Giacometti A, Di Stefano A. Viscoelastic behaviour of hyaluronic acid formulations containing carvacrol prodrugs with antibacterial properties. Int J Pharm 2020;582:119306. [PMID: 32276092 DOI: 10.1016/j.ijpharm.2020.119306] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Teixeira BN, Ozdemir N, Hill LE, Gomes CL. Synthesis and characterization of nano-encapsulated black pepper oleoresin using hydroxypropyl beta-cyclodextrin for antioxidant and antimicrobial applications. J Food Sci 2013;78:N1913-20. [PMID: 24329956 DOI: 10.1111/1750-3841.12312] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
10 Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. Combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the mechanistic basis. Biomed Res Int 2014;2014:761741. [PMID: 25298964 DOI: 10.1155/2014/761741] [Cited by in Crossref: 70] [Cited by in F6Publishing: 55] [Article Influence: 8.8] [Reference Citation Analysis]
11 Rai M, Paralikar P, Jogee P, Agarkar G, Ingle AP, Derita M, Zacchino S. Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives. International Journal of Pharmaceutics 2017;519:67-78. [DOI: 10.1016/j.ijpharm.2017.01.013] [Cited by in Crossref: 85] [Cited by in F6Publishing: 60] [Article Influence: 17.0] [Reference Citation Analysis]
12 Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. Journal of Controlled Release 2014;190:607-23. [DOI: 10.1016/j.jconrel.2014.03.055] [Cited by in Crossref: 193] [Cited by in F6Publishing: 178] [Article Influence: 24.1] [Reference Citation Analysis]
13 Khan J, Tarar SM, Gul I, Nawaz U, Arshad M. Challenges of antibiotic resistance biofilms and potential combating strategies: a review. 3 Biotech 2021;11:169. [PMID: 33816046 DOI: 10.1007/s13205-021-02707-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
14 Lammari N, Louaer O, Meniai AH, Elaissari A. Encapsulation of Essential Oils via Nanoprecipitation Process: Overview, Progress, Challenges and Prospects. Pharmaceutics 2020;12:E431. [PMID: 32392726 DOI: 10.3390/pharmaceutics12050431] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 16.0] [Reference Citation Analysis]
15 Monteagudo-olivan R, Cocero MJ, Coronas J, Rodríguez-rojo S. Supercritical CO2 encapsulation of bioactive molecules in carboxylate based MOFs. Journal of CO2 Utilization 2019;30:38-47. [DOI: 10.1016/j.jcou.2018.12.022] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
16 Tao F, Hill LE, Peng Y, Gomes CL. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT - Food Science and Technology 2014;59:247-55. [DOI: 10.1016/j.lwt.2014.05.037] [Cited by in Crossref: 87] [Cited by in F6Publishing: 60] [Article Influence: 10.9] [Reference Citation Analysis]
17 Gupta S, Variyar PS. Nanoencapsulation of essential oils for sustained release: application as therapeutics and antimicrobials. Encapsulations. Elsevier; 2016. pp. 641-72. [DOI: 10.1016/b978-0-12-804307-3.00015-6] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
18 Rehman A, Jafari SM, Aadil RM, Assadpour E, Randhawa MA, Mahmood S. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends in Food Science & Technology 2020;101:106-21. [DOI: 10.1016/j.tifs.2020.05.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 11] [Article Influence: 17.0] [Reference Citation Analysis]
19 Campana R, Baffone W. Carvacrol efficacy in reducing microbial biofilms on stainless steel and in limiting re-growth of injured cells. Food Control 2018;90:10-7. [DOI: 10.1016/j.foodcont.2018.02.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
20 Goci E, Haloci E, Di Stefano A, Chiavaroli A, Angelini P, Miha A, Cacciatore I, Marinelli L. Evaluation of In Vitro Capsaicin Release and Antimicrobial Properties of Topical Pharmaceutical Formulation. Biomolecules 2021;11:432. [PMID: 33804191 DOI: 10.3390/biom11030432] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Pandit J, Aqil M, Sultana Y. Nanoencapsulation technology to control release and enhance bioactivity of essential oils. Encapsulations. Elsevier; 2016. pp. 597-640. [DOI: 10.1016/b978-0-12-804307-3.00014-4] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
22 Di Giulio M, Di Bartolomeo S, Di Campli E, Sancilio S, Marsich E, Travan A, Cataldi A, Cellini L. The effect of a silver nanoparticle polysaccharide system on streptococcal and saliva-derived biofilms. Int J Mol Sci 2013;14:13615-25. [PMID: 23812080 DOI: 10.3390/ijms140713615] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
23 Qiao Z, Yuan Z, Zhang W, Wei D, Hu N. Preparation, in vitro release and antibacterial activity evaluation of rifampicin and moxifloxacin-loaded poly(D,L-lactide-co-glycolide) microspheres. Artif Cells Nanomed Biotechnol 2019;47:790-8. [PMID: 30892092 DOI: 10.1080/21691401.2019.1581792] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
24 Campos-requena VH, Rivas BL, Pérez MA, Garrido-miranda KA, Pereira ED. Polymer/clay nanocomposite films as active packaging material: Modeling of antimicrobial release. European Polymer Journal 2015;71:461-75. [DOI: 10.1016/j.eurpolymj.2015.08.018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
25 Almeida KB, Araujo JL, Cavalcanti JF, Romanos MTV, Mourão SC, Amaral ACF, Falcão DQ. In vitro release and anti-herpetic activity of Cymbopogon citratus volatile oil-loaded nanogel. Revista Brasileira de Farmacognosia 2018;28:495-502. [DOI: 10.1016/j.bjp.2018.05.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
26 Chouhan S, Sharma K, Guleria S. Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. Medicines (Basel) 2017;4:E58. [PMID: 28930272 DOI: 10.3390/medicines4030058] [Cited by in Crossref: 247] [Cited by in F6Publishing: 169] [Article Influence: 49.4] [Reference Citation Analysis]
27 de Freitas LM, Calixto GM, Chorilli M, Giusti JS, Bagnato VS, Soukos NS, Amiji MM, Fontana CR. Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis in Vivo. Int J Mol Sci 2016;17:E769. [PMID: 27213356 DOI: 10.3390/ijms17050769] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 7.3] [Reference Citation Analysis]
28 Forier K, Messiaen A, Raemdonck K, Nelis H, De Smedt S, Demeester J, Coenye T, Braeckmans K. Probing the size limit for nanomedicine penetration into Burkholderia multivorans and Pseudomonas aeruginosa biofilms. Journal of Controlled Release 2014;195:21-8. [DOI: 10.1016/j.jconrel.2014.07.061] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 6.5] [Reference Citation Analysis]
29 Froiio F, Mosaddik A, Morshed MT, Paolino D, Fessi H, Elaissari A. Edible Polymers for Essential Oils Encapsulation: Application in Food Preservation. Ind Eng Chem Res 2019;58:20932-45. [DOI: 10.1021/acs.iecr.9b02418] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 6.7] [Reference Citation Analysis]
30 Kachur K, Suntres Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit Rev Food Sci Nutr 2020;60:3042-53. [PMID: 31617738 DOI: 10.1080/10408398.2019.1675585] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
31 Pomastowski P, Król-Górniak A, Railean-Plugaru V, Buszewski B. Zinc Oxide Nanocomposites-Extracellular Synthesis, Physicochemical Characterization and Antibacterial Potential. Materials (Basel) 2020;13:E4347. [PMID: 33007802 DOI: 10.3390/ma13194347] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
32 Pardhi DM, Şen Karaman D, Timonen J, Wu W, Zhang Q, Satija S, Mehta M, Charbe N, McCarron PA, Tambuwala MM, Bakshi HA, Negi P, Aljabali AA, Dua K, Chellappan DK, Behera A, Pathak K, Watharkar RB, Rautio J, Rosenholm JM. Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. Int J Pharm 2020;586:119531. [PMID: 32540348 DOI: 10.1016/j.ijpharm.2020.119531] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
33 Shakeri F, Shakeri S, Hojjatoleslami M. Preparation and characterization of carvacrol loaded polyhydroxybutyrate nanoparticles by nanoprecipitation and dialysis methods. J Food Sci 2014;79:N697-705. [PMID: 24621231 DOI: 10.1111/1750-3841.12406] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
34 Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. Nanomicro Lett 2020;12:45. [PMID: 34138283 DOI: 10.1007/s40820-020-0383-9] [Cited by in Crossref: 60] [Cited by in F6Publishing: 17] [Article Influence: 30.0] [Reference Citation Analysis]
35 Qayyum S, Khan AU. Nanoparticles vs. biofilms: a battle against another paradigm of antibiotic resistance. Med Chem Commun 2016;7:1479-98. [DOI: 10.1039/c6md00124f] [Cited by in Crossref: 82] [Article Influence: 13.7] [Reference Citation Analysis]
36 Suntres ZE, Coccimiglio J, Alipour M. The Bioactivity and Toxicological Actions of Carvacrol. Critical Reviews in Food Science and Nutrition 2014;55:304-18. [DOI: 10.1080/10408398.2011.653458] [Cited by in Crossref: 150] [Cited by in F6Publishing: 117] [Article Influence: 18.8] [Reference Citation Analysis]
37 Das S, Kumar A. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets. Sci Rep 2014;4:7126. [PMID: 25410423 DOI: 10.1038/srep07126] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
38 Lopes AIF, Monteiro M, Araújo ARL, Rodrigues ARO, Castanheira EMS, Pereira DM, Olim P, Fortes AG, Gonçalves MST. Cytotoxic Plant Extracts towards Insect Cells: Bioactivity and Nanoencapsulation Studies for Application as Biopesticides. Molecules 2020;25:E5855. [PMID: 33322297 DOI: 10.3390/molecules25245855] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Nuță DC, Limban C, Chiriță C, Chifiriuc MC, Costea T, Ioniță P, Nicolau I, Zarafu I. Contribution of Essential Oils to the Fight against Microbial Biofilms—A Review. Processes 2021;9:537. [DOI: 10.3390/pr9030537] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
40 Liakos IL, Iordache F, Carzino R, Scarpellini A, Oneto M, Bianchini P, Grumezescu AM, Holban AM. Cellulose acetate - essential oil nanocapsules with antimicrobial activity for biomedical applications. Colloids and Surfaces B: Biointerfaces 2018;172:471-9. [DOI: 10.1016/j.colsurfb.2018.08.069] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
41 Silva LM, Hill LE, Figueiredo E, Gomes CL. Delivery of phytochemicals of tropical fruit by-products using poly (dl-lactide-co-glycolide) (PLGA) nanoparticles: Synthesis, characterization, and antimicrobial activity. Food Chemistry 2014;165:362-70. [DOI: 10.1016/j.foodchem.2014.05.118] [Cited by in Crossref: 58] [Cited by in F6Publishing: 47] [Article Influence: 7.3] [Reference Citation Analysis]
42 Marchese A, Arciola CR, Coppo E, Barbieri R, Barreca D, Chebaibi S, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM, Daglia M. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: mechanisms, synergies and bio-inspired anti-infective materials. Biofouling 2018;34:630-56. [PMID: 30067078 DOI: 10.1080/08927014.2018.1480756] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
43 Campos-requena VH, Rivas BL, Pérez MA, Pereira ED. Short- and long-term loss of carvacrol from polymer/clay nanocomposite film - a chemometric approach: Loss of carvacrol from polymer/clay nanocomposite film. Polym Int 2016;65:483-90. [DOI: 10.1002/pi.5084] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
44 Carbone-Howell AL, Stebbins ND, Uhrich KE. Poly(anhydride-esters) comprised exclusively of naturally occurring antimicrobials and EDTA: antioxidant and antibacterial activities. Biomacromolecules 2014;15:1889-95. [PMID: 24702678 DOI: 10.1021/bm500303a] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
45 Li CH, Landis RF, Makabenta JM, Nabawy A, Tronchet T, Archambault D, Liu Y, Huang R, Golan M, Cui W, Mager J, Gupta A, Schmidt-Malan S, Patel R, Rotello VM. Nanotherapeutics using all-natural materials. Effective treatment of wound biofilm infections using crosslinked nanoemulsions. Mater Horiz 2021;8:1776-82. [PMID: 34594564 DOI: 10.1039/d0mh01826k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
46 Ciandrini E, Campana R, Federici S, Manti A, Battistelli M, Falcieri E, Papa S, Baffone W. In vitro activity of Carvacrol against titanium-adherent oral biofilms and planktonic cultures. Clin Oral Investig 2014;18:2001-13. [PMID: 24458367 DOI: 10.1007/s00784-013-1179-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 3.5] [Reference Citation Analysis]
47 Campos EVR, Proença PLF, Oliveira JL, Pereira AES, de Morais Ribeiro LN, Fernandes FO, Gonçalves KC, Polanczyk RA, Pasquoto-Stigliani T, Lima R, Melville CC, Della Vechia JF, Andrade DJ, Fraceto LF. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Sci Rep 2018;8:7623. [PMID: 29769620 DOI: 10.1038/s41598-018-26043-x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 11.0] [Reference Citation Analysis]
48 Turkez H, Yousef MI, Sönmez E, Togar B, Bakan F, Sozio P, Stefano AD. Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells: Nano-hydroxyapatite toxicity in human lymphocytes. J Appl Toxicol 2014;34:373-9. [DOI: 10.1002/jat.2958] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 4.2] [Reference Citation Analysis]
49 Kamimura JA, Santos EH, Hill LE, Gomes CL. Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. LWT - Food Science and Technology 2014;57:701-9. [DOI: 10.1016/j.lwt.2014.02.014] [Cited by in Crossref: 66] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
50 Cacciatore I, Di Giulio M, Fornasari E, Di Stefano A, Cerasa LS, Marinelli L, Turkez H, Di Campli E, Di Bartolomeo S, Robuffo I, Cellini L. Carvacrol codrugs: a new approach in the antimicrobial plan. PLoS One 2015;10:e0120937. [PMID: 25859852 DOI: 10.1371/journal.pone.0120937] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
51 Chifiriuc MC, Kamerzan C, Lazar V. Essential Oils and Nanoparticles. Nanostructures for Antimicrobial Therapy. Elsevier; 2017. pp. 279-91. [DOI: 10.1016/b978-0-323-46152-8.00012-3] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
52 Kon KV, Rai MK. Combining Essential Oils with Antibiotics and other Antimicrobial Agents to Overcome Multidrug-Resistant Bacteria. Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components. Elsevier; 2013. pp. 149-64. [DOI: 10.1016/b978-0-12-398539-2.00010-0] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
53 Lammari N, Louaer O, Meniai AH, Fessi H, Elaissari A. Plant oils: From chemical composition to encapsulated form use. Int J Pharm 2021;601:120538. [PMID: 33781879 DOI: 10.1016/j.ijpharm.2021.120538] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Nair A, Mallya R, Suvarna V, Khan TA, Momin M, Omri A. Nanoparticles—Attractive Carriers of Antimicrobial Essential Oils. Antibiotics 2022;11:108. [DOI: 10.3390/antibiotics11010108] [Reference Citation Analysis]
55 Pola CC, Moraes ARF, Medeiros EAA, Teófilo RF, Soares NFF, Gomes CL. Development and optimization of pH-responsive PLGA-chitosan nanoparticles for triggered release of antimicrobials. Food Chem 2019;295:671-9. [PMID: 31174811 DOI: 10.1016/j.foodchem.2019.05.165] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
56 Birk SE, Boisen A, Nielsen LH. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv Drug Deliv Rev 2021;174:30-52. [PMID: 33845040 DOI: 10.1016/j.addr.2021.04.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Asbahani AE, Miladi K, Badri W, Sala M, Addi EA, Casabianca H, Mousadik AE, Hartmann D, Jilale A, Renaud F, Elaissari A. Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics 2015;483:220-43. [DOI: 10.1016/j.ijpharm.2014.12.069] [Cited by in Crossref: 378] [Cited by in F6Publishing: 248] [Article Influence: 54.0] [Reference Citation Analysis]
58 Shakeri M, Razavi SH, Shakeri S. Carvacrol and astaxanthin co-entrapment in beeswax solid lipid nanoparticles as an efficient nano-system with dual antioxidant and anti-biofilm activities. LWT 2019;107:280-90. [DOI: 10.1016/j.lwt.2019.03.031] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
59 Zodrow KR, Schiffman JD, Elimelech M. Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation. Langmuir 2012;28:13993-9. [PMID: 22937881 DOI: 10.1021/la303286v] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 5.4] [Reference Citation Analysis]
60 Kemme M, Heinzel-Wieland R. Quantitative Assessment of Antimicrobial Activity of PLGA Films Loaded with 4-Hexylresorcinol. J Funct Biomater 2018;9:E4. [PMID: 29324696 DOI: 10.3390/jfb9010004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
61 Oliveira D, Mezzomo N, Gomes C, Ferreira S. Encapsulation of passion fruit seed oil by means of supercritical antisolvent process. The Journal of Supercritical Fluids 2017;129:96-105. [DOI: 10.1016/j.supflu.2017.02.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
62 Powell LC, Sowedan A, Khan S, Wright CJ, Hawkins K, Onsøyen E, Myrvold R, Hill KE, Thomas DW. The effect of alginate oligosaccharides on the mechanical properties of Gram-negative biofilms. Biofouling 2013;29:413-21. [PMID: 23574333 DOI: 10.1080/08927014.2013.777954] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 6.1] [Reference Citation Analysis]
63 Kon KV, Rai MK. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev Anti Infect Ther 2012;10:775-90. [PMID: 22943401 DOI: 10.1586/eri.12.57] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 7.4] [Reference Citation Analysis]
64 Kaderides K, Goula AM. Encapsulation of pomegranate peel extract with a new carrier material from orange juice by-products. Journal of Food Engineering 2019;253:1-13. [DOI: 10.1016/j.jfoodeng.2019.02.019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 6.7] [Reference Citation Analysis]
65 Han C, Romero N, Fischer S, Dookran J, Berger A, Doiron AL. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnology Reviews 2017;6:383-404. [DOI: 10.1515/ntrev-2016-0054] [Cited by in Crossref: 32] [Cited by in F6Publishing: 13] [Article Influence: 6.4] [Reference Citation Analysis]
66 Rubenick JB, Rubim AM, Bellé F, Nogueira-librelotto DR, Rolim CMB. Preparation of mupirocin-loaded polymeric nanocapsules using essential oil of rosemary. Braz J Pharm Sci 2017;53. [DOI: 10.1590/s2175-97902017000116101] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
67 Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med 2014;2014:651593. [PMID: 24971152 DOI: 10.1155/2014/651593] [Cited by in Crossref: 172] [Cited by in F6Publishing: 142] [Article Influence: 21.5] [Reference Citation Analysis]
68 Aragón J, Costa C, Coelhoso I, Mendoza G, Aguiar-Ricardo A, Irusta S. Electrospun asymmetric membranes for wound dressing applications. Mater Sci Eng C Mater Biol Appl 2019;103:109822. [PMID: 31349490 DOI: 10.1016/j.msec.2019.109822] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
69 Hill LE, Gomes CL. Characterization of temperature and pH-responsive poly-N-isopropylacrylamide-co-polymer nanoparticles for the release of antimicrobials. Mater Res Express 2014;1:035405. [DOI: 10.1088/2053-1591/1/3/035405] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
70 Marinelli L, Di Stefano A, Cacciatore I. Carvacrol and its derivatives as antibacterial agents. Phytochem Rev 2018;17:903-21. [DOI: 10.1007/s11101-018-9569-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 12] [Article Influence: 9.3] [Reference Citation Analysis]
71 Marchese A, Arciola CR, Barbieri R, Silva AS, Nabavi SF, Tsetegho Sokeng AJ, Izadi M, Jafari NJ, Suntar I, Daglia M, Nabavi SM. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials (Basel) 2017;10:E947. [PMID: 28809799 DOI: 10.3390/ma10080947] [Cited by in Crossref: 78] [Cited by in F6Publishing: 51] [Article Influence: 15.6] [Reference Citation Analysis]
72 Fahmy SA, Mamdouh W. Garlic oil-loaded PLGA nanoparticles with controllable size and shape and enhanced antibacterial activities. J Appl Polym Sci 2018;135:46133. [DOI: 10.1002/app.46133] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
73 Hansen EN, Zmistowski B, Parvizi J. Periprosthetic Joint Infection: What is on the Horizon? Int J Artif Organs 2012;35:935-50. [DOI: 10.5301/ijao.5000145] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
74 Maes C, Bouquillon S, Fauconnier ML. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules 2019;24:E2539. [PMID: 31336803 DOI: 10.3390/molecules24142539] [Cited by in Crossref: 42] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
75 Gheffar C, Le H, Jouenne T, Schaumann A, Corbière A, Vaudry D, Lecerf D, Karakasyan C. Antibacterial Activity of Ciprofloxacin‐Loaded Poly(lactic‐co‐glycolic acid)‐Nanoparticles Against Staphylococcus aureus. Part Part Syst Charact 2021;38:2000253. [DOI: 10.1002/ppsc.202000253] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Muñoz-bonilla A, Fernández-garcía M. The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. European Polymer Journal 2015;65:46-62. [DOI: 10.1016/j.eurpolymj.2015.01.030] [Cited by in Crossref: 124] [Cited by in F6Publishing: 70] [Article Influence: 17.7] [Reference Citation Analysis]
77 Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2021. [PMID: 34532918 DOI: 10.1002/ptr.7275] [Reference Citation Analysis]
78 Sajid M, Khan MSA, Cameotra SS, Ahmad I. Drug Delivery Systems That Eradicate and/or Prevent Biofilm Formation. In: Rumbaugh KP, Ahmad I, editors. Antibiofilm Agents. Berlin: Springer Berlin Heidelberg; 2014. pp. 407-24. [DOI: 10.1007/978-3-642-53833-9_18] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
79 Hill LE, Taylor TM, Gomes C. Antimicrobial Efficacy of Poly (DL-lactide-co-glycolide) (PLGA) Nanoparticles with Entrapped Cinnamon Bark Extract against Listeria monocytogenes and Salmonella typhimurium: Antimicrobial PLGA nanoparticles…. Journal of Food Science 2013;78:N626-32. [DOI: 10.1111/1750-3841.12069] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 5.1] [Reference Citation Analysis]
80 Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 2019;8:76. [PMID: 31131107 DOI: 10.1186/s13756-019-0533-3] [Cited by in Crossref: 199] [Cited by in F6Publishing: 154] [Article Influence: 66.3] [Reference Citation Analysis]
81 Singh BN, Prateeksha, Upreti DK, Singh BR, Defoirdt T, Gupta VK, De Souza AO, Singh HB, Barreira JC, Ferreira IC, Vahabi K. Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Crit Rev Biotechnol 2017;37:525-40. [PMID: 27684212 DOI: 10.1080/07388551.2016.1199010] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
82 Hill LE, Gomes CL. Optimization of synthesis process of thermally-responsive poly-n-isopropylacrylamide nanoparticles for controlled release of antimicrobial hydrophobic compounds. Mater Res Express 2014;1:045404. [DOI: 10.1088/2053-1591/1/4/045404] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]